关于具有两个、三个或四个优先梯度的奇异扰动问题的微结构形成

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Janusz Ginster
{"title":"关于具有两个、三个或四个优先梯度的奇异扰动问题的微结构形成","authors":"Janusz Ginster","doi":"10.1007/s00332-024-10067-x","DOIUrl":null,"url":null,"abstract":"<p>In this manuscript, singularly perturbed energies with 2, 3, or 4 preferred gradients subject to incompatible Dirichlet boundary conditions are studied. This extends results on models for martensitic microstructures in shape memory alloys (<span>\\(N=2\\)</span>), a continuum approximation for the <span>\\(J_1-J_3\\)</span>-model for discrete spin systems (<span>\\(N=4\\)</span>), and models for crystalline surfaces with <i>N</i> different facets (general <i>N</i>). On a unit square, scaling laws are proved with respect to two parameters, one measuring the transition cost between different preferred gradients and the other measuring the incompatibility of the set of preferred gradients and the boundary conditions. By a change of coordinates, the latter can also be understood as an incompatibility of a variable domain with a fixed set of preferred gradients. Moreover, it is shown how simple building blocks and covering arguments lead to upper bounds on the energy and solutions to the differential inclusion problem on general Lipschitz domains.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Formation of Microstructure for Singularly Perturbed Problems with Two, Three, or Four Preferred Gradients\",\"authors\":\"Janusz Ginster\",\"doi\":\"10.1007/s00332-024-10067-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this manuscript, singularly perturbed energies with 2, 3, or 4 preferred gradients subject to incompatible Dirichlet boundary conditions are studied. This extends results on models for martensitic microstructures in shape memory alloys (<span>\\\\(N=2\\\\)</span>), a continuum approximation for the <span>\\\\(J_1-J_3\\\\)</span>-model for discrete spin systems (<span>\\\\(N=4\\\\)</span>), and models for crystalline surfaces with <i>N</i> different facets (general <i>N</i>). On a unit square, scaling laws are proved with respect to two parameters, one measuring the transition cost between different preferred gradients and the other measuring the incompatibility of the set of preferred gradients and the boundary conditions. By a change of coordinates, the latter can also be understood as an incompatibility of a variable domain with a fixed set of preferred gradients. Moreover, it is shown how simple building blocks and covering arguments lead to upper bounds on the energy and solutions to the differential inclusion problem on general Lipschitz domains.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-024-10067-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10067-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本手稿研究了具有 2、3 或 4 个优先梯度的奇异扰动能量,这些能量受不相容的迪里夏特边界条件的限制。这扩展了形状记忆合金中马氏体微结构模型(\(N=2\))、离散自旋系统的\(J_1-J_3\)-模型的连续近似(\(N=4\))以及具有 N 个不同切面(一般 N)的结晶表面模型的研究成果。在单位正方形上,证明了关于两个参数的缩放定律,一个是测量不同优选梯度之间的过渡成本,另一个是测量优选梯度集与边界条件的不相容性。通过改变坐标,后者也可以理解为可变域与固定的优选梯度集的不相容性。此外,我们还展示了如何通过简单的构件和覆盖论证得出能量上限以及一般 Lipschitz 域上微分包容问题的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the Formation of Microstructure for Singularly Perturbed Problems with Two, Three, or Four Preferred Gradients

On the Formation of Microstructure for Singularly Perturbed Problems with Two, Three, or Four Preferred Gradients

In this manuscript, singularly perturbed energies with 2, 3, or 4 preferred gradients subject to incompatible Dirichlet boundary conditions are studied. This extends results on models for martensitic microstructures in shape memory alloys (\(N=2\)), a continuum approximation for the \(J_1-J_3\)-model for discrete spin systems (\(N=4\)), and models for crystalline surfaces with N different facets (general N). On a unit square, scaling laws are proved with respect to two parameters, one measuring the transition cost between different preferred gradients and the other measuring the incompatibility of the set of preferred gradients and the boundary conditions. By a change of coordinates, the latter can also be understood as an incompatibility of a variable domain with a fixed set of preferred gradients. Moreover, it is shown how simple building blocks and covering arguments lead to upper bounds on the energy and solutions to the differential inclusion problem on general Lipschitz domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信