利用土地利用数据集对两次人口普查之间的豪滕省(南非)贫困状况进行空间预测

IF 2.1 3区 地球科学 Q2 GEOGRAPHY
Samy Katumba, Serena Coetzee, Alfred Stein, Inger Fabris‐Rotelli
{"title":"利用土地利用数据集对两次人口普查之间的豪滕省(南非)贫困状况进行空间预测","authors":"Samy Katumba, Serena Coetzee, Alfred Stein, Inger Fabris‐Rotelli","doi":"10.1111/tgis.13227","DOIUrl":null,"url":null,"abstract":"To realize the first sustainable development goal of ending “poverty in all its forms everywhere,” local governments in South Africa need to implement informed targeted policy interventions based on up‐to‐date data and sound analytics. Statistics South Africa (Stats SA) Censuses reveal the socioeconomic circumstances of people living in South Africa but are only conducted every 10 years. As a result, most analytical studies done in‐between Censuses rely on outdated socioeconomic data. This study demonstrates how poverty levels in one of the provinces of South Africa, Gauteng, can be predicted when up‐to‐date Census datasets are not available. The spatial lag model is used to explain the relationship between the South African Multidimensional Poverty Index (SAMPI) and statistically significant variables extracted from land use datasets (i.e., land areas classified as built‐up, informal, residential, township, and non‐urban), and to ultimately predict the levels of poverty. Out‐of‐sample predicted poverty levels obtained based on the spatial lag model correlate with the actual levels of poverty thereby reflecting known spatial patterns of the levels of poverty in Gauteng province.","PeriodicalId":47842,"journal":{"name":"Transactions in GIS","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial prediction of poverty in Gauteng province (South Africa) in‐between Censuses using land use datasets\",\"authors\":\"Samy Katumba, Serena Coetzee, Alfred Stein, Inger Fabris‐Rotelli\",\"doi\":\"10.1111/tgis.13227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To realize the first sustainable development goal of ending “poverty in all its forms everywhere,” local governments in South Africa need to implement informed targeted policy interventions based on up‐to‐date data and sound analytics. Statistics South Africa (Stats SA) Censuses reveal the socioeconomic circumstances of people living in South Africa but are only conducted every 10 years. As a result, most analytical studies done in‐between Censuses rely on outdated socioeconomic data. This study demonstrates how poverty levels in one of the provinces of South Africa, Gauteng, can be predicted when up‐to‐date Census datasets are not available. The spatial lag model is used to explain the relationship between the South African Multidimensional Poverty Index (SAMPI) and statistically significant variables extracted from land use datasets (i.e., land areas classified as built‐up, informal, residential, township, and non‐urban), and to ultimately predict the levels of poverty. Out‐of‐sample predicted poverty levels obtained based on the spatial lag model correlate with the actual levels of poverty thereby reflecting known spatial patterns of the levels of poverty in Gauteng province.\",\"PeriodicalId\":47842,\"journal\":{\"name\":\"Transactions in GIS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions in GIS\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/tgis.13227\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions in GIS","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/tgis.13227","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

为了实现第一个可持续发展目标,即消除 "各地一切形式的贫困",南非地方政府需要根据最新数据和可靠分析,实施有针对性的知情政策干预。南非统计局(Stats SA)的人口普查揭示了生活在南非的人们的社会经济状况,但每十年才进行一次。因此,在两次人口普查之间进行的大多数分析研究都依赖于过时的社会经济数据。本研究展示了在无法获得最新人口普查数据集的情况下,如何预测南非豪登省的贫困水平。空间滞后模型用于解释南非多维贫困指数(SAMPI)与从土地利用数据集(即划分为已建、非正规、住宅、城镇和非城镇的土地面积)中提取的具有统计意义的变量之间的关系,并最终预测贫困水平。根据空间滞后模型得出的样本外预测贫困水平与实际贫困水平相关,从而反映了豪滕省贫困水平的已知空间模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial prediction of poverty in Gauteng province (South Africa) in‐between Censuses using land use datasets
To realize the first sustainable development goal of ending “poverty in all its forms everywhere,” local governments in South Africa need to implement informed targeted policy interventions based on up‐to‐date data and sound analytics. Statistics South Africa (Stats SA) Censuses reveal the socioeconomic circumstances of people living in South Africa but are only conducted every 10 years. As a result, most analytical studies done in‐between Censuses rely on outdated socioeconomic data. This study demonstrates how poverty levels in one of the provinces of South Africa, Gauteng, can be predicted when up‐to‐date Census datasets are not available. The spatial lag model is used to explain the relationship between the South African Multidimensional Poverty Index (SAMPI) and statistically significant variables extracted from land use datasets (i.e., land areas classified as built‐up, informal, residential, township, and non‐urban), and to ultimately predict the levels of poverty. Out‐of‐sample predicted poverty levels obtained based on the spatial lag model correlate with the actual levels of poverty thereby reflecting known spatial patterns of the levels of poverty in Gauteng province.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions in GIS
Transactions in GIS GEOGRAPHY-
CiteScore
4.60
自引率
8.30%
发文量
116
期刊介绍: Transactions in GIS is an international journal which provides a forum for high quality, original research articles, review articles, short notes and book reviews that focus on: - practical and theoretical issues influencing the development of GIS - the collection, analysis, modelling, interpretation and display of spatial data within GIS - the connections between GIS and related technologies - new GIS applications which help to solve problems affecting the natural or built environments, or business
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信