Daniel Tsingay Illakwahhi, Maheswara Rao Vegi, Bajarang Bali Lal Srivastava
{"title":"评估坦桑尼亚菱镁矿在硬石膏回收和其他工业应用中的适用性","authors":"Daniel Tsingay Illakwahhi, Maheswara Rao Vegi, Bajarang Bali Lal Srivastava","doi":"10.1007/s13146-024-00989-8","DOIUrl":null,"url":null,"abstract":"<p>Magnesite (MgCO<sub>3</sub>) is a valuable mineral with wide industrial applications; thus, geochemical familiarity and deposit quality are critical for making the best use of these resources. Tanzania is reported to have magnesite deposits in at least 12 different locations; however, four of these were chosen at random for study. This study aimed to examine the mineralogical and elemental composition of rock samples from Chambogo (KL), Muriatata (AR), Lobolosoiti (MN), and Chikaza (DM) using x-ray fluorescence (XRF) and powder x-ray diffraction (XRD). XRF examination revealed that sample KL, AR, MN, and DM, respectively, contain 45.21%, 46.06%, 43.21%, and 43.21% of magnesium oxide. Besides MgO, all samples contained SiO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>, Al<sub>2</sub>O<sub>3</sub>, CaO and several trace elements as impurities, with only calcium oxide, iron, arsenic, and chromium identified as impurities of concern. However, XRD analysis indicated magnesite as the major mineral phase in rock samples KL, AR, MN, and DM, with percentage concentrations of 65.2, 68.14, 63.87, and 68, respectively. In all rock samples, strong peaks at 2θ ∼ 33<sup>o</sup>, 43<sup>o</sup>, 54<sup>o</sup> and 55<sup>o</sup>, confirmed the crystalline nature of magnesite. Calcination of these samples however, resulted in peak shift and phase change, with main diffraction peaks generated at 2θ ∼ 36.9<sup>o</sup>, 42.9<sup>o</sup> and 62.3<sup>o</sup>, confirming the formation of crystalline MgO. Despite considerable contamination levels of CaO, iron, chromium, and arsenic in the samples, all samples had enough magnesite to be mined for industrial use.</p>","PeriodicalId":9612,"journal":{"name":"Carbonates and Evaporites","volume":"4 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment of Tanzania magnesite’s suitability for the struvite recovery and other industrial applications\",\"authors\":\"Daniel Tsingay Illakwahhi, Maheswara Rao Vegi, Bajarang Bali Lal Srivastava\",\"doi\":\"10.1007/s13146-024-00989-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Magnesite (MgCO<sub>3</sub>) is a valuable mineral with wide industrial applications; thus, geochemical familiarity and deposit quality are critical for making the best use of these resources. Tanzania is reported to have magnesite deposits in at least 12 different locations; however, four of these were chosen at random for study. This study aimed to examine the mineralogical and elemental composition of rock samples from Chambogo (KL), Muriatata (AR), Lobolosoiti (MN), and Chikaza (DM) using x-ray fluorescence (XRF) and powder x-ray diffraction (XRD). XRF examination revealed that sample KL, AR, MN, and DM, respectively, contain 45.21%, 46.06%, 43.21%, and 43.21% of magnesium oxide. Besides MgO, all samples contained SiO<sub>2</sub>, Fe<sub>2</sub>O<sub>3</sub>, Al<sub>2</sub>O<sub>3</sub>, CaO and several trace elements as impurities, with only calcium oxide, iron, arsenic, and chromium identified as impurities of concern. However, XRD analysis indicated magnesite as the major mineral phase in rock samples KL, AR, MN, and DM, with percentage concentrations of 65.2, 68.14, 63.87, and 68, respectively. In all rock samples, strong peaks at 2θ ∼ 33<sup>o</sup>, 43<sup>o</sup>, 54<sup>o</sup> and 55<sup>o</sup>, confirmed the crystalline nature of magnesite. Calcination of these samples however, resulted in peak shift and phase change, with main diffraction peaks generated at 2θ ∼ 36.9<sup>o</sup>, 42.9<sup>o</sup> and 62.3<sup>o</sup>, confirming the formation of crystalline MgO. Despite considerable contamination levels of CaO, iron, chromium, and arsenic in the samples, all samples had enough magnesite to be mined for industrial use.</p>\",\"PeriodicalId\":9612,\"journal\":{\"name\":\"Carbonates and Evaporites\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbonates and Evaporites\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s13146-024-00989-8\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbonates and Evaporites","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s13146-024-00989-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
Assessment of Tanzania magnesite’s suitability for the struvite recovery and other industrial applications
Magnesite (MgCO3) is a valuable mineral with wide industrial applications; thus, geochemical familiarity and deposit quality are critical for making the best use of these resources. Tanzania is reported to have magnesite deposits in at least 12 different locations; however, four of these were chosen at random for study. This study aimed to examine the mineralogical and elemental composition of rock samples from Chambogo (KL), Muriatata (AR), Lobolosoiti (MN), and Chikaza (DM) using x-ray fluorescence (XRF) and powder x-ray diffraction (XRD). XRF examination revealed that sample KL, AR, MN, and DM, respectively, contain 45.21%, 46.06%, 43.21%, and 43.21% of magnesium oxide. Besides MgO, all samples contained SiO2, Fe2O3, Al2O3, CaO and several trace elements as impurities, with only calcium oxide, iron, arsenic, and chromium identified as impurities of concern. However, XRD analysis indicated magnesite as the major mineral phase in rock samples KL, AR, MN, and DM, with percentage concentrations of 65.2, 68.14, 63.87, and 68, respectively. In all rock samples, strong peaks at 2θ ∼ 33o, 43o, 54o and 55o, confirmed the crystalline nature of magnesite. Calcination of these samples however, resulted in peak shift and phase change, with main diffraction peaks generated at 2θ ∼ 36.9o, 42.9o and 62.3o, confirming the formation of crystalline MgO. Despite considerable contamination levels of CaO, iron, chromium, and arsenic in the samples, all samples had enough magnesite to be mined for industrial use.
期刊介绍:
Established in 1979, the international journal Carbonates and Evaporites provides a forum for the exchange of concepts, research and applications on all aspects of carbonate and evaporite geology. This includes the origin and stratigraphy of carbonate and evaporite rocks and issues unique to these rock types: weathering phenomena, notably karst; engineering and environmental issues; mining and minerals extraction; and caves and permeability.
The journal publishes current information in the form of original peer-reviewed articles, invited papers, and reports from meetings, editorials, and book and software reviews. The target audience includes professional geologists, hydrogeologists, engineers, geochemists, and other researchers, libraries, and educational centers.