Jay M. Ver Hoef, Eryn Blagg, Michael Dumelle, Philip M. Dixon, Dale L. Zimmerman, Paul B. Conn
{"title":"使用拉普拉斯近似法对具有模式化协方差矩阵的分层广义线性混合模型进行边际推断","authors":"Jay M. Ver Hoef, Eryn Blagg, Michael Dumelle, Philip M. Dixon, Dale L. Zimmerman, Paul B. Conn","doi":"10.1002/env.2872","DOIUrl":null,"url":null,"abstract":"<p>We develop hierarchical models and methods in a fully parametric approach to generalized linear mixed models for any patterned covariance matrix. The Laplace approximation is used to marginally estimate covariance parameters by integrating over all fixed and latent random effects. The Laplace approximation relies on Newton–Raphson updates, which also leads to predictions for the latent random effects. We develop methodology for complete marginal inference, from estimating covariance parameters and fixed effects to making predictions for unobserved data. The marginal likelihood is developed for six distributions that are often used for binary, count, and positive continuous data, and our framework is easily extended to other distributions. We compare our methods to fully Bayesian methods, automatic differentiation, and integrated nested Laplace approximations (INLA) for bias, mean-squared (prediction) error, and interval coverage, and all methods yield very similar results. However, our methods are much faster than Bayesian methods, and more general than INLA. Examples with binary and proportional data, count data, and positive-continuous data are used to illustrate all six distributions with a variety of patterned covariance structures that include spatial models (both geostatistical and areal models), time series models, and mixtures with typical random intercepts based on grouping.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 7","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2872","citationCount":"0","resultStr":"{\"title\":\"Marginal inference for hierarchical generalized linear mixed models with patterned covariance matrices using the Laplace approximation\",\"authors\":\"Jay M. Ver Hoef, Eryn Blagg, Michael Dumelle, Philip M. Dixon, Dale L. Zimmerman, Paul B. Conn\",\"doi\":\"10.1002/env.2872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We develop hierarchical models and methods in a fully parametric approach to generalized linear mixed models for any patterned covariance matrix. The Laplace approximation is used to marginally estimate covariance parameters by integrating over all fixed and latent random effects. The Laplace approximation relies on Newton–Raphson updates, which also leads to predictions for the latent random effects. We develop methodology for complete marginal inference, from estimating covariance parameters and fixed effects to making predictions for unobserved data. The marginal likelihood is developed for six distributions that are often used for binary, count, and positive continuous data, and our framework is easily extended to other distributions. We compare our methods to fully Bayesian methods, automatic differentiation, and integrated nested Laplace approximations (INLA) for bias, mean-squared (prediction) error, and interval coverage, and all methods yield very similar results. However, our methods are much faster than Bayesian methods, and more general than INLA. Examples with binary and proportional data, count data, and positive-continuous data are used to illustrate all six distributions with a variety of patterned covariance structures that include spatial models (both geostatistical and areal models), time series models, and mixtures with typical random intercepts based on grouping.</p>\",\"PeriodicalId\":50512,\"journal\":{\"name\":\"Environmetrics\",\"volume\":\"35 7\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2872\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmetrics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/env.2872\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2872","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Marginal inference for hierarchical generalized linear mixed models with patterned covariance matrices using the Laplace approximation
We develop hierarchical models and methods in a fully parametric approach to generalized linear mixed models for any patterned covariance matrix. The Laplace approximation is used to marginally estimate covariance parameters by integrating over all fixed and latent random effects. The Laplace approximation relies on Newton–Raphson updates, which also leads to predictions for the latent random effects. We develop methodology for complete marginal inference, from estimating covariance parameters and fixed effects to making predictions for unobserved data. The marginal likelihood is developed for six distributions that are often used for binary, count, and positive continuous data, and our framework is easily extended to other distributions. We compare our methods to fully Bayesian methods, automatic differentiation, and integrated nested Laplace approximations (INLA) for bias, mean-squared (prediction) error, and interval coverage, and all methods yield very similar results. However, our methods are much faster than Bayesian methods, and more general than INLA. Examples with binary and proportional data, count data, and positive-continuous data are used to illustrate all six distributions with a variety of patterned covariance structures that include spatial models (both geostatistical and areal models), time series models, and mixtures with typical random intercepts based on grouping.
期刊介绍:
Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences.
The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.