{"title":"用聚合物添加剂稳定液体薄膜","authors":"R. Yerushalmi-Rozen, J. Klein","doi":"10.1177/0262489319961502001","DOIUrl":null,"url":null,"abstract":"Stability of thin films of non-volatile liquids is a key issue in a variety of applications. Often a film is forced to spread on a substrate which is not wetted by the liquid. The film then ruptures within minutes and dewets. Common methods for achieving stability include the introduction of surface-active low molecular weight agents, or modification of the chemistry of the substrate. We describe here a mechanism for suppressing the rupture of the films by surface-attached polymers together with trace amounts of free polymers in the bulk of the film. The effect may have a kinetic origin, which is related to the entanglement of free chains and surface-attached polymer chains, or it may be due to a modification of the thermodynamic interactions.","PeriodicalId":9816,"journal":{"name":"Cellular Polymers","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilisation of Thin Liquid Films by Polymer Additives\",\"authors\":\"R. Yerushalmi-Rozen, J. Klein\",\"doi\":\"10.1177/0262489319961502001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stability of thin films of non-volatile liquids is a key issue in a variety of applications. Often a film is forced to spread on a substrate which is not wetted by the liquid. The film then ruptures within minutes and dewets. Common methods for achieving stability include the introduction of surface-active low molecular weight agents, or modification of the chemistry of the substrate. We describe here a mechanism for suppressing the rupture of the films by surface-attached polymers together with trace amounts of free polymers in the bulk of the film. The effect may have a kinetic origin, which is related to the entanglement of free chains and surface-attached polymer chains, or it may be due to a modification of the thermodynamic interactions.\",\"PeriodicalId\":9816,\"journal\":{\"name\":\"Cellular Polymers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular Polymers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/0262489319961502001\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/0262489319961502001","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Stabilisation of Thin Liquid Films by Polymer Additives
Stability of thin films of non-volatile liquids is a key issue in a variety of applications. Often a film is forced to spread on a substrate which is not wetted by the liquid. The film then ruptures within minutes and dewets. Common methods for achieving stability include the introduction of surface-active low molecular weight agents, or modification of the chemistry of the substrate. We describe here a mechanism for suppressing the rupture of the films by surface-attached polymers together with trace amounts of free polymers in the bulk of the film. The effect may have a kinetic origin, which is related to the entanglement of free chains and surface-attached polymer chains, or it may be due to a modification of the thermodynamic interactions.
期刊介绍:
Cellular Polymers is concerned primarily with the science of foamed materials, the technology and state of the art for processing and fabricating, the engineering techniques and principles of the machines used to produce them economically, and their applications in varied and wide ranging uses where they are making an increasingly valuable contribution.
Potential problems for the industry are also covered, including fire performance of materials, CFC-replacement technology, recycling and environmental legislation. Reviews of technical and commercial advances in the manufacturing and application technologies are also included.
Cellular Polymers covers these and other related topics and also pays particular attention to the ways in which the science and technology of cellular polymers is being developed throughout the world.