高斯半柔性聚合物中标记单体的广义朗温方程

Xavier Durang, Jae-Hyung Jeon
{"title":"高斯半柔性聚合物中标记单体的广义朗温方程","authors":"Xavier Durang, Jae-Hyung Jeon","doi":"arxiv-2407.14886","DOIUrl":null,"url":null,"abstract":"In this study, we present a comprehensive analysis of the motion of a tagged\nmonomer within a Gaussian semiflexible polymer model. We carefully derived the\ngeneralized Langevin Equation (GLE) that governs the motion of a tagged central\nmonomer. This derivation involves integrating out all the other degrees of\nfreedom within the polymer chain, thereby yielding an effective description of\nthe viscoelastic motion of the tagged monomer. A critical component of our\nanalysis is the memory kernel that appears in the GLE. By examining this\nkernel, we characterized the impact of bending rigidity on the non-Markovian\ndiffusion dynamics of the tagged monomer. Furthermore, we calculated the\nmean-squared displacement of the tagged monomer using the derived GLE. Our\nresults not only show remarkable agreement with previously known results in\ncertain limiting cases but also provide dynamic features over the entire\ntimescale.","PeriodicalId":501040,"journal":{"name":"arXiv - PHYS - Biological Physics","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Langevin equation for a tagged monomer in a Gaussian semiflexible polymer\",\"authors\":\"Xavier Durang, Jae-Hyung Jeon\",\"doi\":\"arxiv-2407.14886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we present a comprehensive analysis of the motion of a tagged\\nmonomer within a Gaussian semiflexible polymer model. We carefully derived the\\ngeneralized Langevin Equation (GLE) that governs the motion of a tagged central\\nmonomer. This derivation involves integrating out all the other degrees of\\nfreedom within the polymer chain, thereby yielding an effective description of\\nthe viscoelastic motion of the tagged monomer. A critical component of our\\nanalysis is the memory kernel that appears in the GLE. By examining this\\nkernel, we characterized the impact of bending rigidity on the non-Markovian\\ndiffusion dynamics of the tagged monomer. Furthermore, we calculated the\\nmean-squared displacement of the tagged monomer using the derived GLE. Our\\nresults not only show remarkable agreement with previously known results in\\ncertain limiting cases but also provide dynamic features over the entire\\ntimescale.\",\"PeriodicalId\":501040,\"journal\":{\"name\":\"arXiv - PHYS - Biological Physics\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Biological Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.14886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Biological Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们对高斯半柔性聚合物模型中的标记单体运动进行了全面分析。我们仔细推导了支配标记中心单体运动的广义朗文方程(GLE)。这一推导涉及对聚合物链中的所有其他自由度进行积分,从而得出对标记单体粘弹性运动的有效描述。我们分析的一个关键部分是出现在 GLE 中的记忆核。通过研究该记忆核,我们确定了弯曲刚度对标记单体非马尔可夫扩散动力学的影响。此外,我们还利用推导出的 GLE 计算了标记单体的主题位移平方。我们的结果不仅与之前已知的某些极限情况下的结果显著一致,而且还提供了整个时间尺度上的动态特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized Langevin equation for a tagged monomer in a Gaussian semiflexible polymer
In this study, we present a comprehensive analysis of the motion of a tagged monomer within a Gaussian semiflexible polymer model. We carefully derived the generalized Langevin Equation (GLE) that governs the motion of a tagged central monomer. This derivation involves integrating out all the other degrees of freedom within the polymer chain, thereby yielding an effective description of the viscoelastic motion of the tagged monomer. A critical component of our analysis is the memory kernel that appears in the GLE. By examining this kernel, we characterized the impact of bending rigidity on the non-Markovian diffusion dynamics of the tagged monomer. Furthermore, we calculated the mean-squared displacement of the tagged monomer using the derived GLE. Our results not only show remarkable agreement with previously known results in certain limiting cases but also provide dynamic features over the entire timescale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信