机械合金化制备的 CrCuFeNiZn 纳米晶高熵合金的微观结构演变

IF 1.8 4区 工程技术 Q3 ENGINEERING, MECHANICAL
K Raja Rao, Vinay Kumar Soni, Asiful Hossain Seikh, A Ghosh, Sudip Kumar Sinha
{"title":"机械合金化制备的 CrCuFeNiZn 纳米晶高熵合金的微观结构演变","authors":"K Raja Rao, Vinay Kumar Soni, Asiful Hossain Seikh, A Ghosh, Sudip Kumar Sinha","doi":"10.1177/09544062241257419","DOIUrl":null,"url":null,"abstract":"High Entropy Alloys (HEAs) have become the most researched structural materials in the scientific community during the last decade due to their attributes like excellent strength and wear resistance. In this research, CrCuFeNiZn HEA was prepared using mechanical alloying technique. Further, X-ray diffraction (XRD) and Scanning electron microscope (SEM) analysis of prepared HEA were carried out at various milling time intervals (10 min, 5 h, 10 h, 15 h, 20 h, and 25 h) to determine solid solution formation. Results manifest that CrCuFeNiZn HEA exhibited BCC + FCC (dual phase) structure after 25 h of milling. Moreover, the crystallite size as measured from the XRD analysis for the 25 h milled powder was found to be 32.8 nm and lattice strain at the end of milling is calculated to be 0.428%. SEM-EDS analysis further confirms the homogeneous distribution of the constituting elements in the as-fabricated alloy aggregate.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"41 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructural evolution of CrCuFeNiZn nanocrystalline high entropy alloy prepared by mechanical alloying\",\"authors\":\"K Raja Rao, Vinay Kumar Soni, Asiful Hossain Seikh, A Ghosh, Sudip Kumar Sinha\",\"doi\":\"10.1177/09544062241257419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High Entropy Alloys (HEAs) have become the most researched structural materials in the scientific community during the last decade due to their attributes like excellent strength and wear resistance. In this research, CrCuFeNiZn HEA was prepared using mechanical alloying technique. Further, X-ray diffraction (XRD) and Scanning electron microscope (SEM) analysis of prepared HEA were carried out at various milling time intervals (10 min, 5 h, 10 h, 15 h, 20 h, and 25 h) to determine solid solution formation. Results manifest that CrCuFeNiZn HEA exhibited BCC + FCC (dual phase) structure after 25 h of milling. Moreover, the crystallite size as measured from the XRD analysis for the 25 h milled powder was found to be 32.8 nm and lattice strain at the end of milling is calculated to be 0.428%. SEM-EDS analysis further confirms the homogeneous distribution of the constituting elements in the as-fabricated alloy aggregate.\",\"PeriodicalId\":20558,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544062241257419\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544062241257419","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

高熵合金(HEAs)因其优异的强度和耐磨性等特性,在过去十年中已成为科学界研究最多的结构材料。本研究采用机械合金化技术制备了铬铜铁镍锌高熵合金。此外,在不同的研磨时间间隔(10 分钟、5 小时、10 小时、15 小时、20 小时和 25 小时)下,对制备的 HEA 进行了 X 射线衍射(XRD)和扫描电子显微镜(SEM)分析,以确定固溶体的形成。结果表明,在研磨 25 小时后,铬铜铁镍锌 HEA 呈现出 BCC + FCC(双相)结构。此外,根据 XRD 分析,25 小时研磨粉末的晶粒大小为 32.8 nm,研磨结束时的晶格应变为 0.428%。扫描电子显微镜-电子显微镜分析(SEM-EDS)进一步证实了构成元素在制成的合金集合体中的均匀分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microstructural evolution of CrCuFeNiZn nanocrystalline high entropy alloy prepared by mechanical alloying
High Entropy Alloys (HEAs) have become the most researched structural materials in the scientific community during the last decade due to their attributes like excellent strength and wear resistance. In this research, CrCuFeNiZn HEA was prepared using mechanical alloying technique. Further, X-ray diffraction (XRD) and Scanning electron microscope (SEM) analysis of prepared HEA were carried out at various milling time intervals (10 min, 5 h, 10 h, 15 h, 20 h, and 25 h) to determine solid solution formation. Results manifest that CrCuFeNiZn HEA exhibited BCC + FCC (dual phase) structure after 25 h of milling. Moreover, the crystallite size as measured from the XRD analysis for the 25 h milled powder was found to be 32.8 nm and lattice strain at the end of milling is calculated to be 0.428%. SEM-EDS analysis further confirms the homogeneous distribution of the constituting elements in the as-fabricated alloy aggregate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
10.00%
发文量
625
审稿时长
4.3 months
期刊介绍: The Journal of Mechanical Engineering Science advances the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信