基于非线性扰动观测器的 4-DOF 塔式起重机自适应滑模防摆控制

IF 1.8 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Chen Zhao, Qin He, Jibin Zhang, Xiangshuai Zhu, Qinglin Meng
{"title":"基于非线性扰动观测器的 4-DOF 塔式起重机自适应滑模防摆控制","authors":"Chen Zhao, Qin He, Jibin Zhang, Xiangshuai Zhu, Qinglin Meng","doi":"10.1177/09544062241260710","DOIUrl":null,"url":null,"abstract":"Tower cranes are widely applied in outdoor environments with inevitable external disturbances, which can reduce transportation efficiency and safety. To improve the transient control performance of the tower crane when transporting goods and to guarantee good robustness, this paper designs an adaptive sliding mode Anti-swing control method based on a nonlinear disturbance observer. Firstly, a 4-DOF tower crane error dynamics model considering external disturbances and air friction is established, and then, a nonlinear disturbance observer is designed to estimate the aggregate disturbance. Further, a disturbance effect indicator (DEI) is set to judge the advantages and disadvantages of the disturbance effect on the tower crane system from a new perspective. Finally, beneficial disturbance effects are organically combined with a sliding mode control method possessing an adaptive mechanism to eliminate payload swing by introducing favorable interference. Using Lyapunov stability analysis in conjunction with the LaSalle invariance principle, the closed-loop system is shown to be asymptotically stable. Simulation results show that the controller proposed in this paper achieves accurate positioning by driving the trolley and the jib, and at the same time, can keep the payload swing angle slight during the working process and eliminate the payload swing angle after accurate positioning. Moreover, it is also robust in the face of external disturbances and system parameter variations.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"57 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive sliding mode anti-swing control of 4-DOF tower crane based on a nonlinear disturbance observer\",\"authors\":\"Chen Zhao, Qin He, Jibin Zhang, Xiangshuai Zhu, Qinglin Meng\",\"doi\":\"10.1177/09544062241260710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tower cranes are widely applied in outdoor environments with inevitable external disturbances, which can reduce transportation efficiency and safety. To improve the transient control performance of the tower crane when transporting goods and to guarantee good robustness, this paper designs an adaptive sliding mode Anti-swing control method based on a nonlinear disturbance observer. Firstly, a 4-DOF tower crane error dynamics model considering external disturbances and air friction is established, and then, a nonlinear disturbance observer is designed to estimate the aggregate disturbance. Further, a disturbance effect indicator (DEI) is set to judge the advantages and disadvantages of the disturbance effect on the tower crane system from a new perspective. Finally, beneficial disturbance effects are organically combined with a sliding mode control method possessing an adaptive mechanism to eliminate payload swing by introducing favorable interference. Using Lyapunov stability analysis in conjunction with the LaSalle invariance principle, the closed-loop system is shown to be asymptotically stable. Simulation results show that the controller proposed in this paper achieves accurate positioning by driving the trolley and the jib, and at the same time, can keep the payload swing angle slight during the working process and eliminate the payload swing angle after accurate positioning. Moreover, it is also robust in the face of external disturbances and system parameter variations.\",\"PeriodicalId\":20558,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544062241260710\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544062241260710","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

塔式起重机广泛应用于户外环境,不可避免地会受到外界干扰,从而降低运输效率和安全性。为了改善塔式起重机在运输货物时的瞬态控制性能并保证良好的鲁棒性,本文设计了一种基于非线性扰动观测器的自适应滑模防摆控制方法。首先,建立了考虑外部扰动和空气摩擦的 4-DOF 塔式起重机误差动力学模型,然后设计了一个非线性扰动观测器来估计总体扰动。此外,还设置了扰动效应指标(DEI),从新的角度判断扰动效应对塔式起重机系统的利弊。最后,将有利的干扰效应与具有自适应机制的滑模控制方法有机结合,通过引入有利干扰消除有效载荷摆动。利用 Lyapunov 稳定性分析和拉萨尔不变性原理,闭环系统被证明是渐近稳定的。仿真结果表明,本文提出的控制器通过驱动小车和摇臂实现了精确定位,同时能在工作过程中保持有效载荷的微小摆动角,并在精确定位后消除有效载荷的摆动角。此外,面对外部干扰和系统参数变化,它还具有良好的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive sliding mode anti-swing control of 4-DOF tower crane based on a nonlinear disturbance observer
Tower cranes are widely applied in outdoor environments with inevitable external disturbances, which can reduce transportation efficiency and safety. To improve the transient control performance of the tower crane when transporting goods and to guarantee good robustness, this paper designs an adaptive sliding mode Anti-swing control method based on a nonlinear disturbance observer. Firstly, a 4-DOF tower crane error dynamics model considering external disturbances and air friction is established, and then, a nonlinear disturbance observer is designed to estimate the aggregate disturbance. Further, a disturbance effect indicator (DEI) is set to judge the advantages and disadvantages of the disturbance effect on the tower crane system from a new perspective. Finally, beneficial disturbance effects are organically combined with a sliding mode control method possessing an adaptive mechanism to eliminate payload swing by introducing favorable interference. Using Lyapunov stability analysis in conjunction with the LaSalle invariance principle, the closed-loop system is shown to be asymptotically stable. Simulation results show that the controller proposed in this paper achieves accurate positioning by driving the trolley and the jib, and at the same time, can keep the payload swing angle slight during the working process and eliminate the payload swing angle after accurate positioning. Moreover, it is also robust in the face of external disturbances and system parameter variations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
10.00%
发文量
625
审稿时长
4.3 months
期刊介绍: The Journal of Mechanical Engineering Science advances the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信