Xuan-xuan Dai, Yu-zhang Li, Sheng-dan Liu, Ling-ying Ye, Chong-jun Bao
{"title":"高纯度 Al-Zn-Mg-Cu 合金在非等温时效过程中的机械性能、局部耐腐蚀性和微观结构演变","authors":"Xuan-xuan Dai, Yu-zhang Li, Sheng-dan Liu, Ling-ying Ye, Chong-jun Bao","doi":"10.1007/s11771-024-5688-2","DOIUrl":null,"url":null,"abstract":"<p>The evolution of mechanical properties, localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging (NIA) was investigated by hardness test, electrical conductivity test, tensile test, intergranular corrosion test, exfoliation corrosion test, slow strain rate tensile test and electrochemical test, and the mechanism has been discussed based on microstructure examination by optical microscopy, electron back scattered diffraction, scanning electron microscopy and scanning transmission electron microscopy. The NIA treatment includes a heating stage from 40 °C to 180 °C with a rate of 20 °C/h and a cooling stage from 180 °C to 40 °C with a rate of 10 °C/h. The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston (GPI) zones to <i>η</i>′ phase. During the cooling stage, the sizes of <i>η</i>′ phase increase with a little change in the number density, leading to a further slight increase of the hardness and strength. As NIA proceeds, the corroded morphology in the alloy changes from a layering feature to a wavy feature, the maximum corrosion depth decreases, and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of mechanical properties, localized corrosion resistance and microstructure of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging\",\"authors\":\"Xuan-xuan Dai, Yu-zhang Li, Sheng-dan Liu, Ling-ying Ye, Chong-jun Bao\",\"doi\":\"10.1007/s11771-024-5688-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The evolution of mechanical properties, localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging (NIA) was investigated by hardness test, electrical conductivity test, tensile test, intergranular corrosion test, exfoliation corrosion test, slow strain rate tensile test and electrochemical test, and the mechanism has been discussed based on microstructure examination by optical microscopy, electron back scattered diffraction, scanning electron microscopy and scanning transmission electron microscopy. The NIA treatment includes a heating stage from 40 °C to 180 °C with a rate of 20 °C/h and a cooling stage from 180 °C to 40 °C with a rate of 10 °C/h. The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston (GPI) zones to <i>η</i>′ phase. During the cooling stage, the sizes of <i>η</i>′ phase increase with a little change in the number density, leading to a further slight increase of the hardness and strength. As NIA proceeds, the corroded morphology in the alloy changes from a layering feature to a wavy feature, the maximum corrosion depth decreases, and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.</p>\",\"PeriodicalId\":15231,\"journal\":{\"name\":\"Journal of Central South University\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Central South University\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11771-024-5688-2\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Central South University","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11771-024-5688-2","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
摘要
通过硬度试验、电导率试验、拉伸试验、晶间腐蚀试验、剥落腐蚀试验、慢应变速率拉伸试验和电化学试验,研究了高纯度铝锌镁铜合金在非等温时效(NIA)过程中的力学性能和耐局部腐蚀性能的变化,并根据光学显微镜、电子背散射衍射、扫描电子显微镜和扫描透射电子显微镜的微观结构检查探讨了其机理。NIA 处理包括从 40 °C 到 180 °C 的加热阶段和从 180 °C 到 40 °C 的冷却阶段,加热速度为 20 °C/h ,冷却速度为 10 °C/h 。结果表明,在 NIA 的加热阶段,硬度和强度迅速增加,因为温度的升高有利于强化析出物的成核和生长,并促进 Guinier-Preston (GPI) 区向 η′ 相的转变。在冷却阶段,η′相的尺寸增大,但数量密度变化不大,从而导致硬度和强度进一步略微增加。随着 NIA 的进行,合金中的腐蚀形态从分层特征变为波浪特征,最大腐蚀深度减小,其原因已根据晶界和亚晶界析出物的微观结构和微观化学特征进行了分析。
Evolution of mechanical properties, localized corrosion resistance and microstructure of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging
The evolution of mechanical properties, localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging (NIA) was investigated by hardness test, electrical conductivity test, tensile test, intergranular corrosion test, exfoliation corrosion test, slow strain rate tensile test and electrochemical test, and the mechanism has been discussed based on microstructure examination by optical microscopy, electron back scattered diffraction, scanning electron microscopy and scanning transmission electron microscopy. The NIA treatment includes a heating stage from 40 °C to 180 °C with a rate of 20 °C/h and a cooling stage from 180 °C to 40 °C with a rate of 10 °C/h. The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston (GPI) zones to η′ phase. During the cooling stage, the sizes of η′ phase increase with a little change in the number density, leading to a further slight increase of the hardness and strength. As NIA proceeds, the corroded morphology in the alloy changes from a layering feature to a wavy feature, the maximum corrosion depth decreases, and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.
期刊介绍:
Focuses on the latest research achievements in mining and metallurgy
Coverage spans across materials science and engineering, metallurgical science and engineering, mineral processing, geology and mining, chemical engineering, and mechanical, electronic and information engineering