单边接触问题的 HDG 方法

IF 1.5 3区 数学 Q1 MATHEMATICS
Mingyang Zhao, Liangjin Zhou
{"title":"单边接触问题的 HDG 方法","authors":"Mingyang Zhao, Liangjin Zhou","doi":"10.1186/s13660-024-03175-5","DOIUrl":null,"url":null,"abstract":"This article presents the HDG approximation as a solution to the unilateral contact problem, leveraging the regularization method and an iterative procedure for resolution. In our study, u represents the potential (displacement of the elastic body) and q represents the flux (the force exerted on the body). Our analysis establishes that the utilization of polynomials of degree $k (k \\ge 1)$ leads to achieving an optimal convergence rate of order $k+1$ in $L^{2}$ -norm for both u and q. Importantly, this optimal convergence is maintained irrespective of whether the domain is discretized through a structured or unstructured grid. The numerical results consistently align with the theoretical findings, underscoring the effectiveness and reliability of the proposed HDG approximation method for unilateral contact problems.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"5 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HDG methods for the unilateral contact problem\",\"authors\":\"Mingyang Zhao, Liangjin Zhou\",\"doi\":\"10.1186/s13660-024-03175-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents the HDG approximation as a solution to the unilateral contact problem, leveraging the regularization method and an iterative procedure for resolution. In our study, u represents the potential (displacement of the elastic body) and q represents the flux (the force exerted on the body). Our analysis establishes that the utilization of polynomials of degree $k (k \\\\ge 1)$ leads to achieving an optimal convergence rate of order $k+1$ in $L^{2}$ -norm for both u and q. Importantly, this optimal convergence is maintained irrespective of whether the domain is discretized through a structured or unstructured grid. The numerical results consistently align with the theoretical findings, underscoring the effectiveness and reliability of the proposed HDG approximation method for unilateral contact problems.\",\"PeriodicalId\":16088,\"journal\":{\"name\":\"Journal of Inequalities and Applications\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inequalities and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13660-024-03175-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03175-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文利用正则化方法和迭代程序,提出了单边接触问题的 HDG 近似解。在我们的研究中,u 代表势(弹性体的位移),q 代表通量(施加在弹性体上的力)。我们的分析表明,使用度数为 $k (k \ge 1)$ 的多项式可使 u 和 q 在 $L^{2}$ -norm(L^{2}$ 正态)下达到最佳收敛率 $k+1$。数值结果与理论研究结果一致,凸显了针对单边接触问题提出的 HDG 近似方法的有效性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HDG methods for the unilateral contact problem
This article presents the HDG approximation as a solution to the unilateral contact problem, leveraging the regularization method and an iterative procedure for resolution. In our study, u represents the potential (displacement of the elastic body) and q represents the flux (the force exerted on the body). Our analysis establishes that the utilization of polynomials of degree $k (k \ge 1)$ leads to achieving an optimal convergence rate of order $k+1$ in $L^{2}$ -norm for both u and q. Importantly, this optimal convergence is maintained irrespective of whether the domain is discretized through a structured or unstructured grid. The numerical results consistently align with the theoretical findings, underscoring the effectiveness and reliability of the proposed HDG approximation method for unilateral contact problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
6.20%
发文量
136
期刊介绍: The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信