弱凸全非线性算子斜切向衍生问题的全局加权洛伦兹估计值

IF 1 3区 数学 Q1 MATHEMATICS
Junior da S. Bessa, Gleydson C. Ricarte
{"title":"弱凸全非线性算子斜切向衍生问题的全局加权洛伦兹估计值","authors":"Junior da S. Bessa, Gleydson C. Ricarte","doi":"10.1007/s11118-024-10156-2","DOIUrl":null,"url":null,"abstract":"<p>In this work, we develop weighted Lorentz-Sobolev estimates for viscosity solutions of fully nonlinear elliptic equations with oblique boundary condition under weakened convexity conditions in the following configuration: </p><span>$$\\left\\{ \\begin{array}{rclcl} F(D^2u,Du,u,x) &amp; =&amp; f(x)&amp; \\text {in} &amp; \\Omega \\\\ \\beta \\cdot Du + \\gamma u&amp; =&amp; g &amp; \\text {on}&amp; \\partial \\Omega ,\\end{array}\\right. $$</span><p>where <span>\\(\\Omega \\)</span> is a bounded domain in <span>\\(\\mathbb {R}^{n}\\)</span> (<span>\\(n\\ge 2\\)</span>), under suitable assumptions on the source term <i>f</i>, data <span>\\(\\beta , \\gamma \\)</span> and <i>g</i>. In addition, we obtain Lorentz-Sobolev estimates for solutions to the obstacle problem and others applications.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"42 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Weighted Lorentz Estimates of Oblique Tangential Derivative Problems for Weakly Convex Fully Nonlinear Operators\",\"authors\":\"Junior da S. Bessa, Gleydson C. Ricarte\",\"doi\":\"10.1007/s11118-024-10156-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we develop weighted Lorentz-Sobolev estimates for viscosity solutions of fully nonlinear elliptic equations with oblique boundary condition under weakened convexity conditions in the following configuration: </p><span>$$\\\\left\\\\{ \\\\begin{array}{rclcl} F(D^2u,Du,u,x) &amp; =&amp; f(x)&amp; \\\\text {in} &amp; \\\\Omega \\\\\\\\ \\\\beta \\\\cdot Du + \\\\gamma u&amp; =&amp; g &amp; \\\\text {on}&amp; \\\\partial \\\\Omega ,\\\\end{array}\\\\right. $$</span><p>where <span>\\\\(\\\\Omega \\\\)</span> is a bounded domain in <span>\\\\(\\\\mathbb {R}^{n}\\\\)</span> (<span>\\\\(n\\\\ge 2\\\\)</span>), under suitable assumptions on the source term <i>f</i>, data <span>\\\\(\\\\beta , \\\\gamma \\\\)</span> and <i>g</i>. In addition, we obtain Lorentz-Sobolev estimates for solutions to the obstacle problem and others applications.</p>\",\"PeriodicalId\":49679,\"journal\":{\"name\":\"Potential Analysis\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Potential Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-024-10156-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10156-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们针对具有斜边界条件的全非线性椭圆方程的粘性解,在弱化凸性条件下开发了加权洛伦兹-索博列夫估计,其配置如下: $$\left\{ \begin{array}{rclcl}F(D^2u,Du,u,x) & =& f(x)& \text {in} & \Omega \\beta \cdot Du + \gamma u& =& g & \text {on}& \partial \Omega ,\end{array}\right.此外,我们还得到了障碍问题解的洛伦兹-索博列夫估计和其他应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Weighted Lorentz Estimates of Oblique Tangential Derivative Problems for Weakly Convex Fully Nonlinear Operators

In this work, we develop weighted Lorentz-Sobolev estimates for viscosity solutions of fully nonlinear elliptic equations with oblique boundary condition under weakened convexity conditions in the following configuration:

$$\left\{ \begin{array}{rclcl} F(D^2u,Du,u,x) & =& f(x)& \text {in} & \Omega \\ \beta \cdot Du + \gamma u& =& g & \text {on}& \partial \Omega ,\end{array}\right. $$

where \(\Omega \) is a bounded domain in \(\mathbb {R}^{n}\) (\(n\ge 2\)), under suitable assumptions on the source term f, data \(\beta , \gamma \) and g. In addition, we obtain Lorentz-Sobolev estimates for solutions to the obstacle problem and others applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Potential Analysis
Potential Analysis 数学-数学
CiteScore
2.20
自引率
9.10%
发文量
83
审稿时长
>12 weeks
期刊介绍: The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信