床配置中的流场预测:参数时空卷积自动编码器方法

IF 1.7 4区 工程技术 Q3 MECHANICS
Ali Mjalled, Reza Namdar, Lucas Reineking, Mohammad Norouzi, Fathollah Varnik, Martin Mönnigmann
{"title":"床配置中的流场预测:参数时空卷积自动编码器方法","authors":"Ali Mjalled, Reza Namdar, Lucas Reineking, Mohammad Norouzi, Fathollah Varnik, Martin Mönnigmann","doi":"10.1080/10407790.2024.2379006","DOIUrl":null,"url":null,"abstract":"The use of deep learning methods for modeling fluid flow has drawn a lot of attention in the past few years. Here we present a data-driven reduced-order model (ROM) for predicting flow fields in a ...","PeriodicalId":49732,"journal":{"name":"Numerical Heat Transfer Part B-Fundamentals","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow field prediction in bed configurations: A parametric spatio-temporal convolutional autoencoder approach\",\"authors\":\"Ali Mjalled, Reza Namdar, Lucas Reineking, Mohammad Norouzi, Fathollah Varnik, Martin Mönnigmann\",\"doi\":\"10.1080/10407790.2024.2379006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of deep learning methods for modeling fluid flow has drawn a lot of attention in the past few years. Here we present a data-driven reduced-order model (ROM) for predicting flow fields in a ...\",\"PeriodicalId\":49732,\"journal\":{\"name\":\"Numerical Heat Transfer Part B-Fundamentals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Heat Transfer Part B-Fundamentals\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10407790.2024.2379006\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Heat Transfer Part B-Fundamentals","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10407790.2024.2379006","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

在过去几年中,使用深度学习方法为流体流动建模引起了广泛关注。在这里,我们提出了一种数据驱动的降阶模型(ROM),用于预测流体流动中的流场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flow field prediction in bed configurations: A parametric spatio-temporal convolutional autoencoder approach
The use of deep learning methods for modeling fluid flow has drawn a lot of attention in the past few years. Here we present a data-driven reduced-order model (ROM) for predicting flow fields in a ...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
18
审稿时长
2.8 months
期刊介绍: Published 12 times per year, Numerical Heat Transfer, Part B: Fundamentals addresses all aspects of the methodology for the numerical solution of problems in heat and mass transfer as well as fluid flow. The journal’s scope also encompasses modeling of complex physical phenomena that serves as a foundation for attaining numerical solutions, and includes numerical or experimental results that support methodology development. All submitted manuscripts are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. The Editor reserves the right to reject without peer review any papers deemed unsuitable.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信