有界平均曲率子曼形体的平均出口时间

IF 1 3区 数学 Q1 MATHEMATICS
G. Pacelli Bessa, Steen Markvorsen, Leandro F. Pessoa
{"title":"有界平均曲率子曼形体的平均出口时间","authors":"G. Pacelli Bessa, Steen Markvorsen, Leandro F. Pessoa","doi":"10.1007/s11118-024-10160-6","DOIUrl":null,"url":null,"abstract":"<p>We show that submanifolds with infinite mean exit time can not be isometrically and minimally immersed into cylinders, horocylinders, cones, and wedges of some product spaces. Our approach is not based on the weak maximum principle at infinity, and thus it permits us to generalize previous results concerning non-immersibility of stochastically complete submanifolds. We also produce estimates for the complete tower of moments for submanifolds with small mean curvature immersed into cylinders.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"42 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mean Exit Times from Submanifolds with Bounded Mean Curvature\",\"authors\":\"G. Pacelli Bessa, Steen Markvorsen, Leandro F. Pessoa\",\"doi\":\"10.1007/s11118-024-10160-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that submanifolds with infinite mean exit time can not be isometrically and minimally immersed into cylinders, horocylinders, cones, and wedges of some product spaces. Our approach is not based on the weak maximum principle at infinity, and thus it permits us to generalize previous results concerning non-immersibility of stochastically complete submanifolds. We also produce estimates for the complete tower of moments for submanifolds with small mean curvature immersed into cylinders.</p>\",\"PeriodicalId\":49679,\"journal\":{\"name\":\"Potential Analysis\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Potential Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-024-10160-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10160-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,具有无限平均退出时间的子漫游无法等轴地、最小地浸入某些积空间的圆柱体、角柱体、圆锥体和楔形中。我们的方法不是基于无穷大时的弱最大原则,因此它允许我们概括以前关于随机完全子曲面不可浸没性的结果。我们还得出了浸入圆柱体的具有小平均曲率的子满足矩塔的估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mean Exit Times from Submanifolds with Bounded Mean Curvature

We show that submanifolds with infinite mean exit time can not be isometrically and minimally immersed into cylinders, horocylinders, cones, and wedges of some product spaces. Our approach is not based on the weak maximum principle at infinity, and thus it permits us to generalize previous results concerning non-immersibility of stochastically complete submanifolds. We also produce estimates for the complete tower of moments for submanifolds with small mean curvature immersed into cylinders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Potential Analysis
Potential Analysis 数学-数学
CiteScore
2.20
自引率
9.10%
发文量
83
审稿时长
>12 weeks
期刊介绍: The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信