卡尔德龙-齐格蒙分解、与算子和弱类型估计相关的哈代空间

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
The Anh Bui, Xuan Thinh Duong
{"title":"卡尔德龙-齐格蒙分解、与算子和弱类型估计相关的哈代空间","authors":"The Anh Bui, Xuan Thinh Duong","doi":"10.1007/s11118-024-10158-0","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\((X, d, \\mu )\\)</span> be a metric space with a metric <i>d</i> and a doubling measure <span>\\(\\mu \\)</span>. Assume that the operator <i>L</i> generates a bounded holomorphic semigroup <span>\\(e^{-tL}\\)</span> on <span>\\(L^2(X)\\)</span> whose semigroup kernel satisfies the Gaussian upper bound. Also assume that <i>L</i> has a bounded holomorphic functional calculus on <span>\\(L^2(X)\\)</span>. Then the Hardy spaces <span>\\(H^p_L(X)\\)</span> associated with the operator <i>L</i> can be defined for <span>\\(0 &lt; p \\le 1\\)</span>. In this paper, we revisit the Calderón-Zygmund decomposition and show that a function <span>\\(f \\in L^1(X)\\cap L^2(X)\\)</span> can be decomposed into a good part which is an <span>\\(L^{\\infty }\\)</span> function and a bad part which is in <span>\\(H^p_L(X)\\)</span> for some <span>\\(0&lt; p &lt;1\\)</span>. An important result of our variants of Calderón-Zygmund decompositions is that if a sub-linear operator <i>T</i> is bounded from <span>\\(L^r(X)\\)</span> to <span>\\(L^r(X)\\)</span> for some <span>\\(r &gt; 1\\)</span> and also bounded from <span>\\(H^p_L(X)\\)</span> to <span>\\(L^p(X)\\)</span> for some <span>\\(0&lt; p &lt; 1\\)</span>, then <i>T</i> is of weak type (1, 1) and bounded from <span>\\(L^q(X)\\)</span> to <span>\\(L^q(X)\\)</span> for all <span>\\(1&lt; q &lt;r\\)</span>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calderón-Zygmund Decomposition, Hardy Spaces Associated with Operators and Weak Type Estimates\",\"authors\":\"The Anh Bui, Xuan Thinh Duong\",\"doi\":\"10.1007/s11118-024-10158-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\((X, d, \\\\mu )\\\\)</span> be a metric space with a metric <i>d</i> and a doubling measure <span>\\\\(\\\\mu \\\\)</span>. Assume that the operator <i>L</i> generates a bounded holomorphic semigroup <span>\\\\(e^{-tL}\\\\)</span> on <span>\\\\(L^2(X)\\\\)</span> whose semigroup kernel satisfies the Gaussian upper bound. Also assume that <i>L</i> has a bounded holomorphic functional calculus on <span>\\\\(L^2(X)\\\\)</span>. Then the Hardy spaces <span>\\\\(H^p_L(X)\\\\)</span> associated with the operator <i>L</i> can be defined for <span>\\\\(0 &lt; p \\\\le 1\\\\)</span>. In this paper, we revisit the Calderón-Zygmund decomposition and show that a function <span>\\\\(f \\\\in L^1(X)\\\\cap L^2(X)\\\\)</span> can be decomposed into a good part which is an <span>\\\\(L^{\\\\infty }\\\\)</span> function and a bad part which is in <span>\\\\(H^p_L(X)\\\\)</span> for some <span>\\\\(0&lt; p &lt;1\\\\)</span>. An important result of our variants of Calderón-Zygmund decompositions is that if a sub-linear operator <i>T</i> is bounded from <span>\\\\(L^r(X)\\\\)</span> to <span>\\\\(L^r(X)\\\\)</span> for some <span>\\\\(r &gt; 1\\\\)</span> and also bounded from <span>\\\\(H^p_L(X)\\\\)</span> to <span>\\\\(L^p(X)\\\\)</span> for some <span>\\\\(0&lt; p &lt; 1\\\\)</span>, then <i>T</i> is of weak type (1, 1) and bounded from <span>\\\\(L^q(X)\\\\)</span> to <span>\\\\(L^q(X)\\\\)</span> for all <span>\\\\(1&lt; q &lt;r\\\\)</span>.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-024-10158-0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10158-0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

让\((X, d, \mu )\)是一个具有度量 d 和倍量 \(\mu \)的度量空间。假设算子 L 在 \(L^2(X)\) 上产生一个有界全形半群 \(e^{-tL}\),其半群核满足高斯上界。同时假设 L 在 \(L^2(X)\) 上有一个有界全形函数微积分。那么与算子 L 相关的哈代空间 \(H^p_L(X)\) 就可以定义为 \(0 < p \le 1\).在本文中,我们重温了卡尔德龙-齐格蒙分解,并证明了一个函数(f \in L^1(X)\cap L^2(X)\)可以分解成好的部分,即一个 \(L^{\infty }\) 函数,以及坏的部分,即在某个 \(0 < p <1\) 的 \(H^p_L(X)\) 中。我们的 Calderón-Zygmund 分解变体的一个重要结果是,如果一个子线性算子 T 对于某个 \(r >.) 从 \(L^r(X)\) 到 \(L^r(X)\) 是有界的;并且对于某个 \(r >;1),并且对于某些(0< p <1),从(H^p_L(X))到(L^p(X))也是有界的,那么T就是弱类型(1, 1),并且对于所有(1< q <r\),从(L^q(X))到(L^q(X))都是有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calderón-Zygmund Decomposition, Hardy Spaces Associated with Operators and Weak Type Estimates

Let \((X, d, \mu )\) be a metric space with a metric d and a doubling measure \(\mu \). Assume that the operator L generates a bounded holomorphic semigroup \(e^{-tL}\) on \(L^2(X)\) whose semigroup kernel satisfies the Gaussian upper bound. Also assume that L has a bounded holomorphic functional calculus on \(L^2(X)\). Then the Hardy spaces \(H^p_L(X)\) associated with the operator L can be defined for \(0 < p \le 1\). In this paper, we revisit the Calderón-Zygmund decomposition and show that a function \(f \in L^1(X)\cap L^2(X)\) can be decomposed into a good part which is an \(L^{\infty }\) function and a bad part which is in \(H^p_L(X)\) for some \(0< p <1\). An important result of our variants of Calderón-Zygmund decompositions is that if a sub-linear operator T is bounded from \(L^r(X)\) to \(L^r(X)\) for some \(r > 1\) and also bounded from \(H^p_L(X)\) to \(L^p(X)\) for some \(0< p < 1\), then T is of weak type (1, 1) and bounded from \(L^q(X)\) to \(L^q(X)\) for all \(1< q <r\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信