基于改进的麻雀搜索算法优化步进电机速度控制系统的 PID 控制器

IF 1.8 4区 工程技术 Q3 ENGINEERING, MECHANICAL
Mingfeng Zhang, Chuntian Xu, Lin Li, Zihuimin Wang, Xu Zong
{"title":"基于改进的麻雀搜索算法优化步进电机速度控制系统的 PID 控制器","authors":"Mingfeng Zhang, Chuntian Xu, Lin Li, Zihuimin Wang, Xu Zong","doi":"10.1177/09544062241261268","DOIUrl":null,"url":null,"abstract":"To improve the control accuracy of the stepper motor, a PID controller based on an improved sparrow search algorithm (ISSA-PID) is designed to improve the response speed as well as the robustness of the closed-loop speed control of the stepper motor by optimizing the position update formula and the step size control parameters based on the sparrow search algorithm. ISSA-PID is applied to the stepper motor speed control system in Matlab and tested by Ramp-up Load and applying perturbation simulation respectively. By comparing with traditional PID, Differential Evolution algorithm PID controller, Particle Swarm Optimization algorithm PID controller, and Ant Lion Optimization algorithm PID controller, the results show that ISSA-PID not only improves the convergence speed and accuracy but also performs better in terms of stability. Finally, the experimental platform of the stepper motor speed control system is built to experimentally verify the performance of the ISSA-PID controller, and the experimental results show that ISSA-PID has stronger robustness and faster response speed compared with the remaining four controllers.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of PID controller for stepper motor speed control system based on improved sparrow search algorithm\",\"authors\":\"Mingfeng Zhang, Chuntian Xu, Lin Li, Zihuimin Wang, Xu Zong\",\"doi\":\"10.1177/09544062241261268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the control accuracy of the stepper motor, a PID controller based on an improved sparrow search algorithm (ISSA-PID) is designed to improve the response speed as well as the robustness of the closed-loop speed control of the stepper motor by optimizing the position update formula and the step size control parameters based on the sparrow search algorithm. ISSA-PID is applied to the stepper motor speed control system in Matlab and tested by Ramp-up Load and applying perturbation simulation respectively. By comparing with traditional PID, Differential Evolution algorithm PID controller, Particle Swarm Optimization algorithm PID controller, and Ant Lion Optimization algorithm PID controller, the results show that ISSA-PID not only improves the convergence speed and accuracy but also performs better in terms of stability. Finally, the experimental platform of the stepper motor speed control system is built to experimentally verify the performance of the ISSA-PID controller, and the experimental results show that ISSA-PID has stronger robustness and faster response speed compared with the remaining four controllers.\",\"PeriodicalId\":20558,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544062241261268\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544062241261268","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了提高步进电机的控制精度,设计了一种基于改进的麻雀搜索算法(ISSA-PID)的 PID 控制器,通过优化基于麻雀搜索算法的位置更新公式和步长控制参数,提高步进电机闭环速度控制的响应速度和鲁棒性。在 Matlab 中将 ISSA-PID 应用于步进电机速度控制系统,并分别进行了斜坡加载和扰动仿真测试。通过与传统 PID、差分进化算法 PID 控制器、粒子群优化算法 PID 控制器和蚁狮优化算法 PID 控制器的比较,结果表明 ISSA-PID 不仅提高了收敛速度和精度,而且在稳定性方面表现更好。最后,搭建了步进电机速度控制系统的实验平台,对 ISSA-PID 控制器的性能进行了实验验证,实验结果表明,与其余四种控制器相比,ISSA-PID 具有更强的鲁棒性和更快的响应速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of PID controller for stepper motor speed control system based on improved sparrow search algorithm
To improve the control accuracy of the stepper motor, a PID controller based on an improved sparrow search algorithm (ISSA-PID) is designed to improve the response speed as well as the robustness of the closed-loop speed control of the stepper motor by optimizing the position update formula and the step size control parameters based on the sparrow search algorithm. ISSA-PID is applied to the stepper motor speed control system in Matlab and tested by Ramp-up Load and applying perturbation simulation respectively. By comparing with traditional PID, Differential Evolution algorithm PID controller, Particle Swarm Optimization algorithm PID controller, and Ant Lion Optimization algorithm PID controller, the results show that ISSA-PID not only improves the convergence speed and accuracy but also performs better in terms of stability. Finally, the experimental platform of the stepper motor speed control system is built to experimentally verify the performance of the ISSA-PID controller, and the experimental results show that ISSA-PID has stronger robustness and faster response speed compared with the remaining four controllers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
10.00%
发文量
625
审稿时长
4.3 months
期刊介绍: The Journal of Mechanical Engineering Science advances the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信