{"title":"重排不变空间上的傅立叶变换","authors":"Ron Kerman, Rama Rawat, Rajesh K. Singh","doi":"10.1007/s00041-024-10101-2","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\rho \\)</span> be a rearrangement-invariant (r.i.) norm on the set <span>\\(M({\\mathbb {R}}^n)\\)</span> of Lebesgue-measurable functions on <span>\\({\\mathbb {R}}^n\\)</span> such that the space <span>\\(L_{\\rho }({\\mathbb {R}}^n) = \\left\\{ f \\in M({\\mathbb {R}}^n): \\rho (f) < \\infty \\right\\} \\)</span> is an interpolation space between <span>\\(L_{2}({\\mathbb {R}}^n)\\)</span> and <span>\\(L_{{\\infty }}({\\mathbb {R}}^n).\\)</span> The principal result of this paper asserts that given such a <span>\\(\\rho ,\\)</span> the inequality </p><span>$$\\begin{aligned} \\rho ({\\hat{f}}) \\le C \\sigma (f) \\end{aligned}$$</span><p>holds for any r.i. norm <span>\\(\\sigma \\)</span> on <span>\\( M({\\mathbb {R}}^n)\\)</span> if and only if </p><span>$$\\begin{aligned} {\\bar{\\rho }} \\left( U f^{*} \\right) \\le C {\\bar{\\sigma }} (f^{*}). \\end{aligned}$$</span><p>Here, <span>\\({\\bar{\\rho }}\\)</span> is the unique r.i. norm on <span>\\(M({\\mathbb {R}}_+)\\)</span>, <span>\\({\\mathbb {R}}_+ = (0, \\infty )\\)</span>, satisfying <span>\\({\\bar{\\rho }}(f^{*})=\\rho (f)\\)</span> and <span>\\(U f^{*} (t) = \\int _{0}^{1/t} f^{*}\\)</span>, in which <span>\\(f^{*}\\)</span> is the nonincreasing rearrangement of <i>f</i> on <span>\\(\\mathbb {R_+}\\)</span>. Further, in this case the smallest r.i. norm <span>\\(\\sigma \\)</span> for which <span>\\(\\rho ( {\\hat{f}}) \\le C \\sigma (f)\\)</span> holds is given by </p><span>$$\\begin{aligned} \\sigma (f) = {\\bar{\\sigma }} (f^{*}) = {\\bar{\\rho }} \\left( U f^{*}\\right) , \\end{aligned}$$</span><p>where, necessarily, <span>\\({\\bar{\\rho }} \\left( \\int _{0}^{1/t} \\chi _{(0, a)} \\right) = {\\bar{\\rho }} \\left( \\min \\{1/t, \\, a\\} \\right) < \\infty \\)</span>, for all <span>\\(a>0\\)</span>. We further specialize and expand these results in the contexts of Orlicz and Lorentz Gamma spaces.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Fourier Transform on Rearrangement-Invariant Spaces\",\"authors\":\"Ron Kerman, Rama Rawat, Rajesh K. Singh\",\"doi\":\"10.1007/s00041-024-10101-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\rho \\\\)</span> be a rearrangement-invariant (r.i.) norm on the set <span>\\\\(M({\\\\mathbb {R}}^n)\\\\)</span> of Lebesgue-measurable functions on <span>\\\\({\\\\mathbb {R}}^n\\\\)</span> such that the space <span>\\\\(L_{\\\\rho }({\\\\mathbb {R}}^n) = \\\\left\\\\{ f \\\\in M({\\\\mathbb {R}}^n): \\\\rho (f) < \\\\infty \\\\right\\\\} \\\\)</span> is an interpolation space between <span>\\\\(L_{2}({\\\\mathbb {R}}^n)\\\\)</span> and <span>\\\\(L_{{\\\\infty }}({\\\\mathbb {R}}^n).\\\\)</span> The principal result of this paper asserts that given such a <span>\\\\(\\\\rho ,\\\\)</span> the inequality </p><span>$$\\\\begin{aligned} \\\\rho ({\\\\hat{f}}) \\\\le C \\\\sigma (f) \\\\end{aligned}$$</span><p>holds for any r.i. norm <span>\\\\(\\\\sigma \\\\)</span> on <span>\\\\( M({\\\\mathbb {R}}^n)\\\\)</span> if and only if </p><span>$$\\\\begin{aligned} {\\\\bar{\\\\rho }} \\\\left( U f^{*} \\\\right) \\\\le C {\\\\bar{\\\\sigma }} (f^{*}). \\\\end{aligned}$$</span><p>Here, <span>\\\\({\\\\bar{\\\\rho }}\\\\)</span> is the unique r.i. norm on <span>\\\\(M({\\\\mathbb {R}}_+)\\\\)</span>, <span>\\\\({\\\\mathbb {R}}_+ = (0, \\\\infty )\\\\)</span>, satisfying <span>\\\\({\\\\bar{\\\\rho }}(f^{*})=\\\\rho (f)\\\\)</span> and <span>\\\\(U f^{*} (t) = \\\\int _{0}^{1/t} f^{*}\\\\)</span>, in which <span>\\\\(f^{*}\\\\)</span> is the nonincreasing rearrangement of <i>f</i> on <span>\\\\(\\\\mathbb {R_+}\\\\)</span>. Further, in this case the smallest r.i. norm <span>\\\\(\\\\sigma \\\\)</span> for which <span>\\\\(\\\\rho ( {\\\\hat{f}}) \\\\le C \\\\sigma (f)\\\\)</span> holds is given by </p><span>$$\\\\begin{aligned} \\\\sigma (f) = {\\\\bar{\\\\sigma }} (f^{*}) = {\\\\bar{\\\\rho }} \\\\left( U f^{*}\\\\right) , \\\\end{aligned}$$</span><p>where, necessarily, <span>\\\\({\\\\bar{\\\\rho }} \\\\left( \\\\int _{0}^{1/t} \\\\chi _{(0, a)} \\\\right) = {\\\\bar{\\\\rho }} \\\\left( \\\\min \\\\{1/t, \\\\, a\\\\} \\\\right) < \\\\infty \\\\)</span>, for all <span>\\\\(a>0\\\\)</span>. We further specialize and expand these results in the contexts of Orlicz and Lorentz Gamma spaces.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00041-024-10101-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00041-024-10101-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
让 \(\rho \) 是集合 \(M({\mathbb {R}}^n) 上的一个重排不变(r.i.上 Lebesgue-measurable functions on \({\mathbb {R}}^n\) 的集合 \(M({\mathbb {R}}^n) 上的规范,使得空间 \(L_{\rho }({\mathbb {R}}^n) = \left\{ f \ in M({\mathbb {R}}^n):\rho (f) < \infty\right\}\是 L_{2}({\mathbb {R}}^n)\) 和 L_{{\infty }}({\mathbb {R}}^n) 之间的插值空间。本文的主要结果断言,给定这样一个 ( (rho ,\)不等式 $$\begin{aligned}\如果并且只有当 $$\begin{aligned} {bar\{rho }} 在 M({\mathbb {R}}^n)\) 上的任意 r.i. norm (\sigma)成立时,才会有 $$\rho ({\hat{f}}) \le C \sigma (f) \end{aligned}$$holds for any r.i. norm (\sigma)。\left( U f^{*} \right) \le C {\bar{sigma }}(f^{*}).\end{aligned}$$Here, \({\bar{\rho }}\) is the unique r.i.norm on \(M({\mathbb {R}}_+)\), \({\mathbb {R}}_+ = (0, \infty )\), satisfying \({\bar{rho }}(f^{*})=\rho (f)\) and\(U f^{*} (t) = \int _{0}^{1/t} f^{*}\)、其中 \(f^{*}\) 是 f 在 \(\mathbb {R_+}\) 上的非递增重排。此外,在这种情况下,\(\rho ( {\hat{f}}) \le C \sigma(f)\)成立的最小r.i. norm (r.i. norm)是由 $$\begin{aligned} 给出的。\sigma (f) = {\bar{\sigma }}(f^{*}) = {\bar{\rho }}\left( U f^{*}\right) , \end{aligned}$$其中,必然是({\bar{\rho }}\left( \int _{0}^{1/t}\chi _{(0, a)} \right) = {\bar{\rho }}\left( \min \{1/t, \, a} \right) < \infty \), for all \(a>0\).我们在奥尔利茨和洛伦兹伽马空间的背景下对这些结果做了进一步的特殊化和扩展。
The Fourier Transform on Rearrangement-Invariant Spaces
Let \(\rho \) be a rearrangement-invariant (r.i.) norm on the set \(M({\mathbb {R}}^n)\) of Lebesgue-measurable functions on \({\mathbb {R}}^n\) such that the space \(L_{\rho }({\mathbb {R}}^n) = \left\{ f \in M({\mathbb {R}}^n): \rho (f) < \infty \right\} \) is an interpolation space between \(L_{2}({\mathbb {R}}^n)\) and \(L_{{\infty }}({\mathbb {R}}^n).\) The principal result of this paper asserts that given such a \(\rho ,\) the inequality
$$\begin{aligned} \rho ({\hat{f}}) \le C \sigma (f) \end{aligned}$$
holds for any r.i. norm \(\sigma \) on \( M({\mathbb {R}}^n)\) if and only if
$$\begin{aligned} {\bar{\rho }} \left( U f^{*} \right) \le C {\bar{\sigma }} (f^{*}). \end{aligned}$$
Here, \({\bar{\rho }}\) is the unique r.i. norm on \(M({\mathbb {R}}_+)\), \({\mathbb {R}}_+ = (0, \infty )\), satisfying \({\bar{\rho }}(f^{*})=\rho (f)\) and \(U f^{*} (t) = \int _{0}^{1/t} f^{*}\), in which \(f^{*}\) is the nonincreasing rearrangement of f on \(\mathbb {R_+}\). Further, in this case the smallest r.i. norm \(\sigma \) for which \(\rho ( {\hat{f}}) \le C \sigma (f)\) holds is given by
where, necessarily, \({\bar{\rho }} \left( \int _{0}^{1/t} \chi _{(0, a)} \right) = {\bar{\rho }} \left( \min \{1/t, \, a\} \right) < \infty \), for all \(a>0\). We further specialize and expand these results in the contexts of Orlicz and Lorentz Gamma spaces.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.