重排不变空间上的傅立叶变换

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ron Kerman, Rama Rawat, Rajesh K. Singh
{"title":"重排不变空间上的傅立叶变换","authors":"Ron Kerman, Rama Rawat, Rajesh K. Singh","doi":"10.1007/s00041-024-10101-2","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\rho \\)</span> be a rearrangement-invariant (r.i.) norm on the set <span>\\(M({\\mathbb {R}}^n)\\)</span> of Lebesgue-measurable functions on <span>\\({\\mathbb {R}}^n\\)</span> such that the space <span>\\(L_{\\rho }({\\mathbb {R}}^n) = \\left\\{ f \\in M({\\mathbb {R}}^n): \\rho (f) &lt; \\infty \\right\\} \\)</span> is an interpolation space between <span>\\(L_{2}({\\mathbb {R}}^n)\\)</span> and <span>\\(L_{{\\infty }}({\\mathbb {R}}^n).\\)</span> The principal result of this paper asserts that given such a <span>\\(\\rho ,\\)</span> the inequality </p><span>$$\\begin{aligned} \\rho ({\\hat{f}}) \\le C \\sigma (f) \\end{aligned}$$</span><p>holds for any r.i. norm <span>\\(\\sigma \\)</span> on <span>\\( M({\\mathbb {R}}^n)\\)</span> if and only if </p><span>$$\\begin{aligned} {\\bar{\\rho }} \\left( U f^{*} \\right) \\le C {\\bar{\\sigma }} (f^{*}). \\end{aligned}$$</span><p>Here, <span>\\({\\bar{\\rho }}\\)</span> is the unique r.i. norm on <span>\\(M({\\mathbb {R}}_+)\\)</span>, <span>\\({\\mathbb {R}}_+ = (0, \\infty )\\)</span>, satisfying <span>\\({\\bar{\\rho }}(f^{*})=\\rho (f)\\)</span> and <span>\\(U f^{*} (t) = \\int _{0}^{1/t} f^{*}\\)</span>, in which <span>\\(f^{*}\\)</span> is the nonincreasing rearrangement of <i>f</i> on <span>\\(\\mathbb {R_+}\\)</span>. Further, in this case the smallest r.i. norm <span>\\(\\sigma \\)</span> for which <span>\\(\\rho ( {\\hat{f}}) \\le C \\sigma (f)\\)</span> holds is given by </p><span>$$\\begin{aligned} \\sigma (f) = {\\bar{\\sigma }} (f^{*}) = {\\bar{\\rho }} \\left( U f^{*}\\right) , \\end{aligned}$$</span><p>where, necessarily, <span>\\({\\bar{\\rho }} \\left( \\int _{0}^{1/t} \\chi _{(0, a)} \\right) = {\\bar{\\rho }} \\left( \\min \\{1/t, \\, a\\} \\right) &lt; \\infty \\)</span>, for all <span>\\(a&gt;0\\)</span>. We further specialize and expand these results in the contexts of Orlicz and Lorentz Gamma spaces.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Fourier Transform on Rearrangement-Invariant Spaces\",\"authors\":\"Ron Kerman, Rama Rawat, Rajesh K. Singh\",\"doi\":\"10.1007/s00041-024-10101-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\rho \\\\)</span> be a rearrangement-invariant (r.i.) norm on the set <span>\\\\(M({\\\\mathbb {R}}^n)\\\\)</span> of Lebesgue-measurable functions on <span>\\\\({\\\\mathbb {R}}^n\\\\)</span> such that the space <span>\\\\(L_{\\\\rho }({\\\\mathbb {R}}^n) = \\\\left\\\\{ f \\\\in M({\\\\mathbb {R}}^n): \\\\rho (f) &lt; \\\\infty \\\\right\\\\} \\\\)</span> is an interpolation space between <span>\\\\(L_{2}({\\\\mathbb {R}}^n)\\\\)</span> and <span>\\\\(L_{{\\\\infty }}({\\\\mathbb {R}}^n).\\\\)</span> The principal result of this paper asserts that given such a <span>\\\\(\\\\rho ,\\\\)</span> the inequality </p><span>$$\\\\begin{aligned} \\\\rho ({\\\\hat{f}}) \\\\le C \\\\sigma (f) \\\\end{aligned}$$</span><p>holds for any r.i. norm <span>\\\\(\\\\sigma \\\\)</span> on <span>\\\\( M({\\\\mathbb {R}}^n)\\\\)</span> if and only if </p><span>$$\\\\begin{aligned} {\\\\bar{\\\\rho }} \\\\left( U f^{*} \\\\right) \\\\le C {\\\\bar{\\\\sigma }} (f^{*}). \\\\end{aligned}$$</span><p>Here, <span>\\\\({\\\\bar{\\\\rho }}\\\\)</span> is the unique r.i. norm on <span>\\\\(M({\\\\mathbb {R}}_+)\\\\)</span>, <span>\\\\({\\\\mathbb {R}}_+ = (0, \\\\infty )\\\\)</span>, satisfying <span>\\\\({\\\\bar{\\\\rho }}(f^{*})=\\\\rho (f)\\\\)</span> and <span>\\\\(U f^{*} (t) = \\\\int _{0}^{1/t} f^{*}\\\\)</span>, in which <span>\\\\(f^{*}\\\\)</span> is the nonincreasing rearrangement of <i>f</i> on <span>\\\\(\\\\mathbb {R_+}\\\\)</span>. Further, in this case the smallest r.i. norm <span>\\\\(\\\\sigma \\\\)</span> for which <span>\\\\(\\\\rho ( {\\\\hat{f}}) \\\\le C \\\\sigma (f)\\\\)</span> holds is given by </p><span>$$\\\\begin{aligned} \\\\sigma (f) = {\\\\bar{\\\\sigma }} (f^{*}) = {\\\\bar{\\\\rho }} \\\\left( U f^{*}\\\\right) , \\\\end{aligned}$$</span><p>where, necessarily, <span>\\\\({\\\\bar{\\\\rho }} \\\\left( \\\\int _{0}^{1/t} \\\\chi _{(0, a)} \\\\right) = {\\\\bar{\\\\rho }} \\\\left( \\\\min \\\\{1/t, \\\\, a\\\\} \\\\right) &lt; \\\\infty \\\\)</span>, for all <span>\\\\(a&gt;0\\\\)</span>. We further specialize and expand these results in the contexts of Orlicz and Lorentz Gamma spaces.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00041-024-10101-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00041-024-10101-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

让 \(\rho \) 是集合 \(M({\mathbb {R}}^n) 上的一个重排不变(r.i.上 Lebesgue-measurable functions on \({\mathbb {R}}^n\) 的集合 \(M({\mathbb {R}}^n) 上的规范,使得空间 \(L_{\rho }({\mathbb {R}}^n) = \left\{ f \ in M({\mathbb {R}}^n):\rho (f) < \infty\right\}\是 L_{2}({\mathbb {R}}^n)\) 和 L_{{\infty }}({\mathbb {R}}^n) 之间的插值空间。本文的主要结果断言,给定这样一个 ( (rho ,\)不等式 $$\begin{aligned}\如果并且只有当 $$\begin{aligned} {bar\{rho }} 在 M({\mathbb {R}}^n)\) 上的任意 r.i. norm (\sigma)成立时,才会有 $$\rho ({\hat{f}}) \le C \sigma (f) \end{aligned}$$holds for any r.i. norm (\sigma)。\left( U f^{*} \right) \le C {\bar{sigma }}(f^{*}).\end{aligned}$$Here, \({\bar{\rho }}\) is the unique r.i.norm on \(M({\mathbb {R}}_+)\), \({\mathbb {R}}_+ = (0, \infty )\), satisfying \({\bar{rho }}(f^{*})=\rho (f)\) and\(U f^{*} (t) = \int _{0}^{1/t} f^{*}\)、其中 \(f^{*}\) 是 f 在 \(\mathbb {R_+}\) 上的非递增重排。此外,在这种情况下,\(\rho ( {\hat{f}}) \le C \sigma(f)\)成立的最小r.i. norm (r.i. norm)是由 $$\begin{aligned} 给出的。\sigma (f) = {\bar{\sigma }}(f^{*}) = {\bar{\rho }}\left( U f^{*}\right) , \end{aligned}$$其中,必然是({\bar{\rho }}\left( \int _{0}^{1/t}\chi _{(0, a)} \right) = {\bar{\rho }}\left( \min \{1/t, \, a} \right) < \infty \), for all \(a>0\).我们在奥尔利茨和洛伦兹伽马空间的背景下对这些结果做了进一步的特殊化和扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Fourier Transform on Rearrangement-Invariant Spaces

Let \(\rho \) be a rearrangement-invariant (r.i.) norm on the set \(M({\mathbb {R}}^n)\) of Lebesgue-measurable functions on \({\mathbb {R}}^n\) such that the space \(L_{\rho }({\mathbb {R}}^n) = \left\{ f \in M({\mathbb {R}}^n): \rho (f) < \infty \right\} \) is an interpolation space between \(L_{2}({\mathbb {R}}^n)\) and \(L_{{\infty }}({\mathbb {R}}^n).\) The principal result of this paper asserts that given such a \(\rho ,\) the inequality

$$\begin{aligned} \rho ({\hat{f}}) \le C \sigma (f) \end{aligned}$$

holds for any r.i. norm \(\sigma \) on \( M({\mathbb {R}}^n)\) if and only if

$$\begin{aligned} {\bar{\rho }} \left( U f^{*} \right) \le C {\bar{\sigma }} (f^{*}). \end{aligned}$$

Here, \({\bar{\rho }}\) is the unique r.i. norm on \(M({\mathbb {R}}_+)\), \({\mathbb {R}}_+ = (0, \infty )\), satisfying \({\bar{\rho }}(f^{*})=\rho (f)\) and \(U f^{*} (t) = \int _{0}^{1/t} f^{*}\), in which \(f^{*}\) is the nonincreasing rearrangement of f on \(\mathbb {R_+}\). Further, in this case the smallest r.i. norm \(\sigma \) for which \(\rho ( {\hat{f}}) \le C \sigma (f)\) holds is given by

$$\begin{aligned} \sigma (f) = {\bar{\sigma }} (f^{*}) = {\bar{\rho }} \left( U f^{*}\right) , \end{aligned}$$

where, necessarily, \({\bar{\rho }} \left( \int _{0}^{1/t} \chi _{(0, a)} \right) = {\bar{\rho }} \left( \min \{1/t, \, a\} \right) < \infty \), for all \(a>0\). We further specialize and expand these results in the contexts of Orlicz and Lorentz Gamma spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信