阶梯:用深度学习方法重新审视宇宙距离阶梯并探索其应用

Rahul Shah, Soumadeep Saha, Purba Mukherjee, Utpal Garain and Supratik Pal
{"title":"阶梯:用深度学习方法重新审视宇宙距离阶梯并探索其应用","authors":"Rahul Shah, Soumadeep Saha, Purba Mukherjee, Utpal Garain and Supratik Pal","doi":"10.3847/1538-4365/ad5558","DOIUrl":null,"url":null,"abstract":"We investigate the prospect of reconstructing the “cosmic distance ladder” of the Universe using a novel deep learning framework called LADDER—Learning Algorithm for Deep Distance Estimation and Reconstruction. LADDER is trained on the apparent magnitude data from the Pantheon Type Ia supernova compilation, incorporating the full covariance information among data points, to produce predictions along with corresponding errors. After employing several validation tests with a number of deep learning models, we pick LADDER as the best-performing one. We then demonstrate applications of our method in the cosmological context, including serving as a model-independent tool for consistency checks for other data sets like baryon acoustic oscillations, calibration of high-redshift data sets such as gamma-ray bursts, and use as a model-independent mock-catalog generator for future probes. Our analysis advocates for careful consideration of machine learning techniques applied to cosmological contexts.","PeriodicalId":22368,"journal":{"name":"The Astrophysical Journal Supplement Series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LADDER: Revisiting the Cosmic Distance Ladder with Deep Learning Approaches and Exploring Its Applications\",\"authors\":\"Rahul Shah, Soumadeep Saha, Purba Mukherjee, Utpal Garain and Supratik Pal\",\"doi\":\"10.3847/1538-4365/ad5558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the prospect of reconstructing the “cosmic distance ladder” of the Universe using a novel deep learning framework called LADDER—Learning Algorithm for Deep Distance Estimation and Reconstruction. LADDER is trained on the apparent magnitude data from the Pantheon Type Ia supernova compilation, incorporating the full covariance information among data points, to produce predictions along with corresponding errors. After employing several validation tests with a number of deep learning models, we pick LADDER as the best-performing one. We then demonstrate applications of our method in the cosmological context, including serving as a model-independent tool for consistency checks for other data sets like baryon acoustic oscillations, calibration of high-redshift data sets such as gamma-ray bursts, and use as a model-independent mock-catalog generator for future probes. Our analysis advocates for careful consideration of machine learning techniques applied to cosmological contexts.\",\"PeriodicalId\":22368,\"journal\":{\"name\":\"The Astrophysical Journal Supplement Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal Supplement Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4365/ad5558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Supplement Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4365/ad5558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了利用一种名为 "LADDER--深度距离估计和重建学习算法 "的新型深度学习框架重建宇宙 "宇宙距离阶梯 "的前景。LADDER 是在 Pantheon Ia 型超新星汇编的视星等数据上进行训练的,其中包含了数据点之间的全部协方差信息,从而得出预测结果和相应的误差。在对多个深度学习模型进行了多次验证测试后,我们选择了 LADDER 作为表现最佳的模型。然后,我们展示了我们的方法在宇宙学背景下的应用,包括作为独立于模型的工具对重子声学振荡等其他数据集进行一致性检查,校准伽马射线暴等高红移数据集,以及作为独立于模型的模拟目录生成器用于未来的探测。我们的分析主张认真考虑将机器学习技术应用于宇宙学范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LADDER: Revisiting the Cosmic Distance Ladder with Deep Learning Approaches and Exploring Its Applications
We investigate the prospect of reconstructing the “cosmic distance ladder” of the Universe using a novel deep learning framework called LADDER—Learning Algorithm for Deep Distance Estimation and Reconstruction. LADDER is trained on the apparent magnitude data from the Pantheon Type Ia supernova compilation, incorporating the full covariance information among data points, to produce predictions along with corresponding errors. After employing several validation tests with a number of deep learning models, we pick LADDER as the best-performing one. We then demonstrate applications of our method in the cosmological context, including serving as a model-independent tool for consistency checks for other data sets like baryon acoustic oscillations, calibration of high-redshift data sets such as gamma-ray bursts, and use as a model-independent mock-catalog generator for future probes. Our analysis advocates for careful consideration of machine learning techniques applied to cosmological contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信