{"title":"通过数值信息贝叶斯去噪学习一类随机微分方程","authors":"Zhanpeng Wang, Lijin Wang, Yanzhao Cao","doi":"10.1615/int.j.uncertaintyquantification.2024052020","DOIUrl":null,"url":null,"abstract":"Learning stochastic differential equations (SDEs) from observational data via neural networks is an important means of quantifying uncertainty in dynamical systems. The learning networks are typically built upon denoising the stochastic systems by harnessing their inherent deterministic nature, such as the Fokker-Planck equations related to SDEs. In this paper we propose the numerics-informed denoising by taking expectations on the Euler-Maruyama numerical scheme of SDEs, and then using the Bayesian neural networks (BNNs) to approximate the expectations through variational inference on the weights' posterior distribution. The approximation accuracy of the BNNs is analyzed. Meanwhiles we give a data acquisition method for learning non-autonomous differential equations (NADEs) which respects the time-variant nature of NADEs' flows. Numerical experiments on three models show effectiveness of the proposed methods.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning a class of stochastic differential equations via numerics-informed Bayesian denoising\",\"authors\":\"Zhanpeng Wang, Lijin Wang, Yanzhao Cao\",\"doi\":\"10.1615/int.j.uncertaintyquantification.2024052020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Learning stochastic differential equations (SDEs) from observational data via neural networks is an important means of quantifying uncertainty in dynamical systems. The learning networks are typically built upon denoising the stochastic systems by harnessing their inherent deterministic nature, such as the Fokker-Planck equations related to SDEs. In this paper we propose the numerics-informed denoising by taking expectations on the Euler-Maruyama numerical scheme of SDEs, and then using the Bayesian neural networks (BNNs) to approximate the expectations through variational inference on the weights' posterior distribution. The approximation accuracy of the BNNs is analyzed. Meanwhiles we give a data acquisition method for learning non-autonomous differential equations (NADEs) which respects the time-variant nature of NADEs' flows. Numerical experiments on three models show effectiveness of the proposed methods.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/int.j.uncertaintyquantification.2024052020\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2024052020","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Learning a class of stochastic differential equations via numerics-informed Bayesian denoising
Learning stochastic differential equations (SDEs) from observational data via neural networks is an important means of quantifying uncertainty in dynamical systems. The learning networks are typically built upon denoising the stochastic systems by harnessing their inherent deterministic nature, such as the Fokker-Planck equations related to SDEs. In this paper we propose the numerics-informed denoising by taking expectations on the Euler-Maruyama numerical scheme of SDEs, and then using the Bayesian neural networks (BNNs) to approximate the expectations through variational inference on the weights' posterior distribution. The approximation accuracy of the BNNs is analyzed. Meanwhiles we give a data acquisition method for learning non-autonomous differential equations (NADEs) which respects the time-variant nature of NADEs' flows. Numerical experiments on three models show effectiveness of the proposed methods.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.