Vineet Thumuluri, Peter Eckmann, Michael K. Gilson, Rose Yu
{"title":"技术报告:改进 LIMO 生成的分子的特性","authors":"Vineet Thumuluri, Peter Eckmann, Michael K. Gilson, Rose Yu","doi":"arxiv-2407.14968","DOIUrl":null,"url":null,"abstract":"This technical report investigates variants of the Latent Inceptionism on\nMolecules (LIMO) framework to improve the properties of generated molecules. We\nconduct ablative studies of molecular representation, decoder model, and\nsurrogate model training scheme. The experiments suggest that an autogressive\nTransformer decoder with GroupSELFIES achieves the best average properties for\nthe random generation task.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technical report: Improving the properties of molecules generated by LIMO\",\"authors\":\"Vineet Thumuluri, Peter Eckmann, Michael K. Gilson, Rose Yu\",\"doi\":\"arxiv-2407.14968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This technical report investigates variants of the Latent Inceptionism on\\nMolecules (LIMO) framework to improve the properties of generated molecules. We\\nconduct ablative studies of molecular representation, decoder model, and\\nsurrogate model training scheme. The experiments suggest that an autogressive\\nTransformer decoder with GroupSELFIES achieves the best average properties for\\nthe random generation task.\",\"PeriodicalId\":501022,\"journal\":{\"name\":\"arXiv - QuanBio - Biomolecules\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Biomolecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.14968\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Technical report: Improving the properties of molecules generated by LIMO
This technical report investigates variants of the Latent Inceptionism on
Molecules (LIMO) framework to improve the properties of generated molecules. We
conduct ablative studies of molecular representation, decoder model, and
surrogate model training scheme. The experiments suggest that an autogressive
Transformer decoder with GroupSELFIES achieves the best average properties for
the random generation task.