嵌套复制动态、嵌套对数选择和基于相似性的学习

Panayotis Mertikopoulos, William H. Sandholm
{"title":"嵌套复制动态、嵌套对数选择和基于相似性的学习","authors":"Panayotis Mertikopoulos, William H. Sandholm","doi":"arxiv-2407.17815","DOIUrl":null,"url":null,"abstract":"We consider a model of learning and evolution in games whose action sets are\nendowed with a partition-based similarity structure intended to capture\nexogenous similarities between strategies. In this model, revising agents have\na higher probability of comparing their current strategy with other strategies\nthat they deem similar, and they switch to the observed strategy with\nprobability proportional to its payoff excess. Because of this implicit bias\ntoward similar strategies, the resulting dynamics - which we call the nested\nreplicator dynamics - do not satisfy any of the standard monotonicity\npostulates for imitative game dynamics; nonetheless, we show that they retain\nthe main long-run rationality properties of the replicator dynamics, albeit at\nquantitatively different rates. We also show that the induced dynamics can be\nviewed as a stimulus-response model in the spirit of Erev & Roth (1998), with\nchoice probabilities given by the nested logit choice rule of Ben-Akiva (1973)\nand McFadden (1978). This result generalizes an existing relation between the\nreplicator dynamics and the exponential weights algorithm in online learning,\nand provides an additional layer of interpretation to our analysis and results.","PeriodicalId":501316,"journal":{"name":"arXiv - CS - Computer Science and Game Theory","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nested replicator dynamics, nested logit choice, and similarity-based learning\",\"authors\":\"Panayotis Mertikopoulos, William H. Sandholm\",\"doi\":\"arxiv-2407.17815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a model of learning and evolution in games whose action sets are\\nendowed with a partition-based similarity structure intended to capture\\nexogenous similarities between strategies. In this model, revising agents have\\na higher probability of comparing their current strategy with other strategies\\nthat they deem similar, and they switch to the observed strategy with\\nprobability proportional to its payoff excess. Because of this implicit bias\\ntoward similar strategies, the resulting dynamics - which we call the nested\\nreplicator dynamics - do not satisfy any of the standard monotonicity\\npostulates for imitative game dynamics; nonetheless, we show that they retain\\nthe main long-run rationality properties of the replicator dynamics, albeit at\\nquantitatively different rates. We also show that the induced dynamics can be\\nviewed as a stimulus-response model in the spirit of Erev & Roth (1998), with\\nchoice probabilities given by the nested logit choice rule of Ben-Akiva (1973)\\nand McFadden (1978). This result generalizes an existing relation between the\\nreplicator dynamics and the exponential weights algorithm in online learning,\\nand provides an additional layer of interpretation to our analysis and results.\",\"PeriodicalId\":501316,\"journal\":{\"name\":\"arXiv - CS - Computer Science and Game Theory\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computer Science and Game Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.17815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Science and Game Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了一个博弈中的学习和演化模型,该模型的行动集具有基于分区的相似性结构,旨在捕捉策略间的外生相似性。在这个模型中,修正策略的代理有更高的概率将他们当前的策略与他们认为相似的其他策略进行比较,然后他们切换到观察到的策略,其概率与策略的超额报酬成正比。由于这种隐含的对相似策略的偏好,由此产生的动态--我们称之为嵌套复制者动态--并不满足模仿博弈动态的任何标准单调性假设;尽管如此,我们还是证明了它们保留了复制者动态的主要长期理性特性,尽管在定量上的速率有所不同。我们还证明,根据 Erev & Roth(1998)的精神,可以把诱导动态看作一个刺激-反应模型,选择概率由 Ben-Akiva(1973)和 McFadden(1978)的嵌套 logit 选择规则给出。这一结果概括了在线学习中施放器动态与指数加权算法之间的现有关系,并为我们的分析和结果提供了额外的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nested replicator dynamics, nested logit choice, and similarity-based learning
We consider a model of learning and evolution in games whose action sets are endowed with a partition-based similarity structure intended to capture exogenous similarities between strategies. In this model, revising agents have a higher probability of comparing their current strategy with other strategies that they deem similar, and they switch to the observed strategy with probability proportional to its payoff excess. Because of this implicit bias toward similar strategies, the resulting dynamics - which we call the nested replicator dynamics - do not satisfy any of the standard monotonicity postulates for imitative game dynamics; nonetheless, we show that they retain the main long-run rationality properties of the replicator dynamics, albeit at quantitatively different rates. We also show that the induced dynamics can be viewed as a stimulus-response model in the spirit of Erev & Roth (1998), with choice probabilities given by the nested logit choice rule of Ben-Akiva (1973) and McFadden (1978). This result generalizes an existing relation between the replicator dynamics and the exponential weights algorithm in online learning, and provides an additional layer of interpretation to our analysis and results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信