巴拿赫网格中 p 阶的弱定点性质

IF 0.8 3区 数学 Q2 MATHEMATICS
H. Ardakani, K. Fallahi, S. Rajavzade
{"title":"巴拿赫网格中 p 阶的弱定点性质","authors":"H. Ardakani, K. Fallahi, S. Rajavzade","doi":"10.1007/s11117-024-01074-z","DOIUrl":null,"url":null,"abstract":"<p>The concept of weak orthogonality of order <i>p</i> (<span>\\(1 \\le p \\le \\infty \\)</span>) in Banach lattices is introduced in order to obtain spaces with the weak fixed point property of order <i>p</i>. Moreover, various connections between a number of Banach space properties to imply the weak fixed point property, such as Opial condition, weak normal structure and property (M) are investigated. In particular, it is established that for each Banach space <i>X</i> and a suitable Banach lattice <i>F</i>, a Banach lattice <span>\\(\\mathcal {M}\\subset K(X,F)\\)</span> has the weak fixed point property of order <i>p</i>, if each evaluation operator <span>\\(\\psi _{y^*}\\)</span> on <span>\\(\\mathcal {M}\\)</span> is a <i>p</i>-convergent operator for <span>\\(y^*\\in F^*\\)</span>.\n</p>","PeriodicalId":54596,"journal":{"name":"Positivity","volume":"12 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak fixed point property of order p in Banach lattices\",\"authors\":\"H. Ardakani, K. Fallahi, S. Rajavzade\",\"doi\":\"10.1007/s11117-024-01074-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The concept of weak orthogonality of order <i>p</i> (<span>\\\\(1 \\\\le p \\\\le \\\\infty \\\\)</span>) in Banach lattices is introduced in order to obtain spaces with the weak fixed point property of order <i>p</i>. Moreover, various connections between a number of Banach space properties to imply the weak fixed point property, such as Opial condition, weak normal structure and property (M) are investigated. In particular, it is established that for each Banach space <i>X</i> and a suitable Banach lattice <i>F</i>, a Banach lattice <span>\\\\(\\\\mathcal {M}\\\\subset K(X,F)\\\\)</span> has the weak fixed point property of order <i>p</i>, if each evaluation operator <span>\\\\(\\\\psi _{y^*}\\\\)</span> on <span>\\\\(\\\\mathcal {M}\\\\)</span> is a <i>p</i>-convergent operator for <span>\\\\(y^*\\\\in F^*\\\\)</span>.\\n</p>\",\"PeriodicalId\":54596,\"journal\":{\"name\":\"Positivity\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Positivity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11117-024-01074-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Positivity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11117-024-01074-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

为了得到具有阶p弱定点性质的空间,引入了巴拿赫网格中阶p弱正交性((1 \le p \le \infty \))的概念。此外,还研究了隐含弱定点性质的一些巴拿赫空间性质之间的各种联系,如Opial条件、弱法结构和性质(M)。特别是,研究发现,对于每个巴拿赫空间 X 和一个合适的巴拿赫网格 F,如果每个在 \(\mathcal {M}\) 上的评估算子 \(\psi _{y^*}\) 都是\(y^*/\in F^*\) 的 p-收敛算子,那么巴拿赫网格 \(\mathcal {M}\subset K(X,F)\) 就具有阶 p 的弱定点性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak fixed point property of order p in Banach lattices

The concept of weak orthogonality of order p (\(1 \le p \le \infty \)) in Banach lattices is introduced in order to obtain spaces with the weak fixed point property of order p. Moreover, various connections between a number of Banach space properties to imply the weak fixed point property, such as Opial condition, weak normal structure and property (M) are investigated. In particular, it is established that for each Banach space X and a suitable Banach lattice F, a Banach lattice \(\mathcal {M}\subset K(X,F)\) has the weak fixed point property of order p, if each evaluation operator \(\psi _{y^*}\) on \(\mathcal {M}\) is a p-convergent operator for \(y^*\in F^*\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Positivity
Positivity 数学-数学
CiteScore
1.80
自引率
10.00%
发文量
88
审稿时长
>12 weeks
期刊介绍: The purpose of Positivity is to provide an outlet for high quality original research in all areas of analysis and its applications to other disciplines having a clear and substantive link to the general theme of positivity. Specifically, articles that illustrate applications of positivity to other disciplines - including but not limited to - economics, engineering, life sciences, physics and statistical decision theory are welcome. The scope of Positivity is to publish original papers in all areas of mathematics and its applications that are influenced by positivity concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信