情境驱动的交互检索和分类,用于建模、策划和再利用

Haomiao Luo, Casey Hansen, Cheryl A Telmer, Difei Tang, Niloofar Arazkhani, Gaoxiang Zhou, Peter Spirtes, Natasa Miskov-Zivanov
{"title":"情境驱动的交互检索和分类,用于建模、策划和再利用","authors":"Haomiao Luo, Casey Hansen, Cheryl A Telmer, Difei Tang, Niloofar Arazkhani, Gaoxiang Zhou, Peter Spirtes, Natasa Miskov-Zivanov","doi":"10.1101/2024.07.21.604448","DOIUrl":null,"url":null,"abstract":"Computational modeling seeks to construct and simulate intracellular signaling networks to understand health and disease. The scientific literature contains descriptions of experimental results that can be interpreted by machines using NLP or LLMs to itemize molecular interactions. This machine readable output can then be used to assess, update or improve existing biological models if there is a tool for comparing the existing model with the information extracted from the papers. Here we describe VIOLIN a tool for classifying machine outputs of molecular interactions with respect to a biological model. VIOLIN classifies interactions as corroborations, contradictions, flagged or extensions with subcategories of each class. This paper analyzes 2 different models, 9 reading sets, 2 NLP and 2 LLM tools to test VIOLIN's capabilities. The results show that VIOLIN successfully classifies interaction types and can be combined with automated filtering to provide a versatile tool for use by the systems biology community.","PeriodicalId":501213,"journal":{"name":"bioRxiv - Systems Biology","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Context-driven interaction retrieval and classification for modeling, curation, and reuse\",\"authors\":\"Haomiao Luo, Casey Hansen, Cheryl A Telmer, Difei Tang, Niloofar Arazkhani, Gaoxiang Zhou, Peter Spirtes, Natasa Miskov-Zivanov\",\"doi\":\"10.1101/2024.07.21.604448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational modeling seeks to construct and simulate intracellular signaling networks to understand health and disease. The scientific literature contains descriptions of experimental results that can be interpreted by machines using NLP or LLMs to itemize molecular interactions. This machine readable output can then be used to assess, update or improve existing biological models if there is a tool for comparing the existing model with the information extracted from the papers. Here we describe VIOLIN a tool for classifying machine outputs of molecular interactions with respect to a biological model. VIOLIN classifies interactions as corroborations, contradictions, flagged or extensions with subcategories of each class. This paper analyzes 2 different models, 9 reading sets, 2 NLP and 2 LLM tools to test VIOLIN's capabilities. The results show that VIOLIN successfully classifies interaction types and can be combined with automated filtering to provide a versatile tool for use by the systems biology community.\",\"PeriodicalId\":501213,\"journal\":{\"name\":\"bioRxiv - Systems Biology\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.21.604448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.21.604448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算建模旨在构建和模拟细胞内信号网络,以了解健康和疾病。科学文献包含对实验结果的描述,这些描述可由使用 NLP 或 LLM 的机器进行解读,以逐项列出分子间的相互作用。如果有一种工具可以将现有模型与从论文中提取的信息进行比较,那么这种机器可读的输出结果就可以用来评估、更新或改进现有的生物模型。在此,我们将介绍 VIOLIN 这一工具,它可根据生物模型对机器输出的分子相互作用进行分类。VIOLIN 将相互作用分为确证、矛盾、标记或扩展四类,每类又分为若干子类。本文分析了 2 种不同的模型、9 个阅读集、2 种 NLP 和 2 种 LLM 工具,以测试 VIOLIN 的能力。结果表明,VIOLIN 成功地对相互作用类型进行了分类,并可与自动过滤相结合,为系统生物学界提供一种多功能工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Context-driven interaction retrieval and classification for modeling, curation, and reuse
Computational modeling seeks to construct and simulate intracellular signaling networks to understand health and disease. The scientific literature contains descriptions of experimental results that can be interpreted by machines using NLP or LLMs to itemize molecular interactions. This machine readable output can then be used to assess, update or improve existing biological models if there is a tool for comparing the existing model with the information extracted from the papers. Here we describe VIOLIN a tool for classifying machine outputs of molecular interactions with respect to a biological model. VIOLIN classifies interactions as corroborations, contradictions, flagged or extensions with subcategories of each class. This paper analyzes 2 different models, 9 reading sets, 2 NLP and 2 LLM tools to test VIOLIN's capabilities. The results show that VIOLIN successfully classifies interaction types and can be combined with automated filtering to provide a versatile tool for use by the systems biology community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信