调查森林图 :获得关于特定研究课题的发散性洞察视图

Jinghong Li, Wen Gu, Koichi Ota, Shinobu Hasegawa
{"title":"调查森林图 :获得关于特定研究课题的发散性洞察视图","authors":"Jinghong Li, Wen Gu, Koichi Ota, Shinobu Hasegawa","doi":"arxiv-2407.17081","DOIUrl":null,"url":null,"abstract":"With the exponential growth in the number of papers and the trend of AI\nresearch, the use of Generative AI for information retrieval and\nquestion-answering has become popular for conducting research surveys. However,\nnovice researchers unfamiliar with a particular field may not significantly\nimprove their efficiency in interacting with Generative AI because they have\nnot developed divergent thinking in that field. This study aims to develop an\nin-depth Survey Forest Diagram that guides novice researchers in divergent\nthinking about the research topic by indicating the citation clues among\nmultiple papers, to help expand the survey perspective for novice researchers.","PeriodicalId":501285,"journal":{"name":"arXiv - CS - Digital Libraries","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Survey Forest Diagram : Gain a Divergent Insight View on a Specific Research Topic\",\"authors\":\"Jinghong Li, Wen Gu, Koichi Ota, Shinobu Hasegawa\",\"doi\":\"arxiv-2407.17081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the exponential growth in the number of papers and the trend of AI\\nresearch, the use of Generative AI for information retrieval and\\nquestion-answering has become popular for conducting research surveys. However,\\nnovice researchers unfamiliar with a particular field may not significantly\\nimprove their efficiency in interacting with Generative AI because they have\\nnot developed divergent thinking in that field. This study aims to develop an\\nin-depth Survey Forest Diagram that guides novice researchers in divergent\\nthinking about the research topic by indicating the citation clues among\\nmultiple papers, to help expand the survey perspective for novice researchers.\",\"PeriodicalId\":501285,\"journal\":{\"name\":\"arXiv - CS - Digital Libraries\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Digital Libraries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.17081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Digital Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着论文数量的指数级增长和人工智能研究的发展趋势,使用生成式人工智能进行信息检索和问题解答已成为开展研究调查的流行方式。然而,不熟悉特定领域的新手研究人员可能无法显著提高与生成式人工智能交互的效率,因为他们尚未在该领域形成发散思维。本研究旨在开发一种深度调查森林图(Survey Forest Diagram),通过指出多篇论文之间的引用线索,引导新手研究人员对研究主题进行发散性思考,从而帮助新手研究人员拓展调查视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Survey Forest Diagram : Gain a Divergent Insight View on a Specific Research Topic
With the exponential growth in the number of papers and the trend of AI research, the use of Generative AI for information retrieval and question-answering has become popular for conducting research surveys. However, novice researchers unfamiliar with a particular field may not significantly improve their efficiency in interacting with Generative AI because they have not developed divergent thinking in that field. This study aims to develop an in-depth Survey Forest Diagram that guides novice researchers in divergent thinking about the research topic by indicating the citation clues among multiple papers, to help expand the survey perspective for novice researchers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信