带线性约束的立方体结构

IF 1.1 3区 数学 Q1 MATHEMATICS
Dae Gwan Lee, Götz E. Pfander, David Walnut
{"title":"带线性约束的立方体结构","authors":"Dae Gwan Lee, Götz E. Pfander, David Walnut","doi":"10.1007/s00025-024-02243-y","DOIUrl":null,"url":null,"abstract":"<p>We consider tilings <span>\\((\\mathcal {Q},\\Phi )\\)</span> of <span>\\(\\mathbb {R}^d\\)</span> where <span>\\(\\mathcal {Q}\\)</span> is the <i>d</i>-dimensional unit cube and the set of translations <span>\\(\\Phi \\)</span> is constrained to lie in a pre-determined lattice <span>\\(A \\mathbb {Z}^d\\)</span> in <span>\\(\\mathbb {R}^d\\)</span>. We provide a full characterization of matrices <i>A</i> for which such cube tilings exist when <span>\\(\\Phi \\)</span> is a sublattice of <span>\\(A\\mathbb {Z}^d\\)</span> with any <span>\\(d \\in \\mathbb {N}\\)</span> or a generic subset of <span>\\(A\\mathbb {Z}^d\\)</span> with <span>\\(d\\le 7\\)</span>. As a direct consequence of our results, we obtain a criterion for the existence of linearly constrained frequency sets, that is, <span>\\(\\Phi \\subseteq A\\mathbb {Z}^d\\)</span>, such that the respective set of complex exponential functions <span>\\(\\mathcal {E} (\\Phi )\\)</span> is an orthogonal Fourier basis for the space of square integrable functions supported on a parallelepiped <span>\\(B\\mathcal {Q}\\)</span>, where <span>\\(A, B \\in \\mathbb {R}^{d \\times d}\\)</span> are nonsingular matrices given a priori. Similarly constructed Riesz bases are considered in a companion paper (Lee et al., Exponential bases for parallelepipeds with frequencies lying in a prescribed lattice, 2024. arXiv:2401.08042).</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cube Tilings with Linear Constraints\",\"authors\":\"Dae Gwan Lee, Götz E. Pfander, David Walnut\",\"doi\":\"10.1007/s00025-024-02243-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider tilings <span>\\\\((\\\\mathcal {Q},\\\\Phi )\\\\)</span> of <span>\\\\(\\\\mathbb {R}^d\\\\)</span> where <span>\\\\(\\\\mathcal {Q}\\\\)</span> is the <i>d</i>-dimensional unit cube and the set of translations <span>\\\\(\\\\Phi \\\\)</span> is constrained to lie in a pre-determined lattice <span>\\\\(A \\\\mathbb {Z}^d\\\\)</span> in <span>\\\\(\\\\mathbb {R}^d\\\\)</span>. We provide a full characterization of matrices <i>A</i> for which such cube tilings exist when <span>\\\\(\\\\Phi \\\\)</span> is a sublattice of <span>\\\\(A\\\\mathbb {Z}^d\\\\)</span> with any <span>\\\\(d \\\\in \\\\mathbb {N}\\\\)</span> or a generic subset of <span>\\\\(A\\\\mathbb {Z}^d\\\\)</span> with <span>\\\\(d\\\\le 7\\\\)</span>. As a direct consequence of our results, we obtain a criterion for the existence of linearly constrained frequency sets, that is, <span>\\\\(\\\\Phi \\\\subseteq A\\\\mathbb {Z}^d\\\\)</span>, such that the respective set of complex exponential functions <span>\\\\(\\\\mathcal {E} (\\\\Phi )\\\\)</span> is an orthogonal Fourier basis for the space of square integrable functions supported on a parallelepiped <span>\\\\(B\\\\mathcal {Q}\\\\)</span>, where <span>\\\\(A, B \\\\in \\\\mathbb {R}^{d \\\\times d}\\\\)</span> are nonsingular matrices given a priori. Similarly constructed Riesz bases are considered in a companion paper (Lee et al., Exponential bases for parallelepipeds with frequencies lying in a prescribed lattice, 2024. arXiv:2401.08042).</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02243-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02243-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了 \(\mathcal {Q},\Phi )\) 的倾斜(((\mathcal {Q},\Phi )\) ,其中 \(\mathcal {Q}\) 是 d 维单位立方体,并且平移集 \(\Phi \) 被约束为位于 \(\mathbb {R}^d\) 中的预定网格 \(A\mathbb {Z}^d\) 中。当 \(\Phi \)是 \(A\mathbb {Z}^d\) 的一个子网格,并且有任何 \(d \in \mathbb {N}\) 或者是 \(A\mathbb {Z}^d\) 的一个通用子集,并且有 \(d\le 7\) 时,我们提供了存在这种立方体倾斜的矩阵 A 的全部特征。作为我们结果的直接结果,我们得到了线性约束频率集存在的标准,即 \(\Phi \subseteq A\mathbb {Z}^d\), 使得各自的复指数函数集 \(\mathcal {E}).(\Phi )是支持平行六面体上的平方可积分函数空间的正交傅里叶基(B\mathcal {Q}\),其中\(A, B \in \mathbb {R}^{d \times d}\)是先验给定的非奇异矩阵。类似构造的里厄斯基在另一篇论文(Lee et al., Exponential bases for parallelepipeds with frequencies lying in a prescribed lattice, 2024. arXiv:2401.08042)中得到了考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cube Tilings with Linear Constraints

Cube Tilings with Linear Constraints

We consider tilings \((\mathcal {Q},\Phi )\) of \(\mathbb {R}^d\) where \(\mathcal {Q}\) is the d-dimensional unit cube and the set of translations \(\Phi \) is constrained to lie in a pre-determined lattice \(A \mathbb {Z}^d\) in \(\mathbb {R}^d\). We provide a full characterization of matrices A for which such cube tilings exist when \(\Phi \) is a sublattice of \(A\mathbb {Z}^d\) with any \(d \in \mathbb {N}\) or a generic subset of \(A\mathbb {Z}^d\) with \(d\le 7\). As a direct consequence of our results, we obtain a criterion for the existence of linearly constrained frequency sets, that is, \(\Phi \subseteq A\mathbb {Z}^d\), such that the respective set of complex exponential functions \(\mathcal {E} (\Phi )\) is an orthogonal Fourier basis for the space of square integrable functions supported on a parallelepiped \(B\mathcal {Q}\), where \(A, B \in \mathbb {R}^{d \times d}\) are nonsingular matrices given a priori. Similarly constructed Riesz bases are considered in a companion paper (Lee et al., Exponential bases for parallelepipeds with frequencies lying in a prescribed lattice, 2024. arXiv:2401.08042).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信