{"title":"与模数为 7 的分区的秩和曲相关的新特性","authors":"Yongqiang Chen, Olivia X. M. Yao","doi":"10.1007/s00025-024-02242-z","DOIUrl":null,"url":null,"abstract":"<p>Beck introduced two important partition statistics <i>NT</i>(<i>r</i>, <i>m</i>, <i>n</i>) and <span>\\(M_{\\omega }(r,m,n)\\)</span> which count the total number of parts in the partitions of <i>n</i> with rank congruent to <i>r</i> modulo <i>m</i> and the total number of ones in the partitions of <i>n</i> with crank congruent to <i>r</i> modulo <i>m</i>, respectively. Andrews confirmed two conjectures of Beck on congruences of <i>NT</i>(<i>r</i>, <i>m</i>, <i>n</i>). Inspired by Andrews’ work, Chern discovered a number of congruences modulo 5, 7, 11 and 13 of <i>NT</i>(<i>r</i>, <i>m</i>, <i>n</i>) and <span>\\(M_{\\omega }(r,m,n) \\)</span>. Recently, Mao, and Xia, Yan and Yao established several identities on <i>NT</i>(<i>r</i>, 7, <i>n</i>) and <span>\\(M_{\\omega }(r,7,n)\\)</span> which yield some congruences modulo 7 due to Chern. Unfortunately, there are six congruences modulo 7 of Chern which are not implied by the identities given by Mao, and Xia, Yan and Yao. In this paper, we establish several new identities on <i>NT</i>(<i>r</i>, 7, <i>n</i>) and <span>\\(M_{\\omega }(r,7,n)\\)</span>. In particular, we prove six identities which are analogous to “Ramanujan’s most beautiful identity”and imply Chern’s six congruences.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Identities Associated with Ranks and Cranks of Partitions Modulo 7\",\"authors\":\"Yongqiang Chen, Olivia X. M. Yao\",\"doi\":\"10.1007/s00025-024-02242-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Beck introduced two important partition statistics <i>NT</i>(<i>r</i>, <i>m</i>, <i>n</i>) and <span>\\\\(M_{\\\\omega }(r,m,n)\\\\)</span> which count the total number of parts in the partitions of <i>n</i> with rank congruent to <i>r</i> modulo <i>m</i> and the total number of ones in the partitions of <i>n</i> with crank congruent to <i>r</i> modulo <i>m</i>, respectively. Andrews confirmed two conjectures of Beck on congruences of <i>NT</i>(<i>r</i>, <i>m</i>, <i>n</i>). Inspired by Andrews’ work, Chern discovered a number of congruences modulo 5, 7, 11 and 13 of <i>NT</i>(<i>r</i>, <i>m</i>, <i>n</i>) and <span>\\\\(M_{\\\\omega }(r,m,n) \\\\)</span>. Recently, Mao, and Xia, Yan and Yao established several identities on <i>NT</i>(<i>r</i>, 7, <i>n</i>) and <span>\\\\(M_{\\\\omega }(r,7,n)\\\\)</span> which yield some congruences modulo 7 due to Chern. Unfortunately, there are six congruences modulo 7 of Chern which are not implied by the identities given by Mao, and Xia, Yan and Yao. In this paper, we establish several new identities on <i>NT</i>(<i>r</i>, 7, <i>n</i>) and <span>\\\\(M_{\\\\omega }(r,7,n)\\\\)</span>. In particular, we prove six identities which are analogous to “Ramanujan’s most beautiful identity”and imply Chern’s six congruences.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02242-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02242-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
贝克引入了两个重要的分治统计量 NT(r, m, n) 和 M_{\omega }(r,m,n)\),它们分别计算了 n 的分治中与 r modulo m 相等的部分的总数,以及 n 的分治中与 r modulo m 相等的一的总数。安德鲁斯证实了贝克关于 NT(r, m, n) 全等的两个猜想。受安德鲁斯工作的启发,钱恩发现了 NT(r, m, n) 和 \(M_{\omega }(r,m,n) \) 的一些同余模为 5、7、11 和 13 的同余。最近,Mao 和 Xia、Yan 和 Yao 建立了关于 NT(r, 7, n) 和 \(M_{\omega }(r,7,n)\) 的几个同余,这些同余产生了一些由 Chern 引起的模为 7 的同余。遗憾的是,有六个 Chern 的模 7 同余并不隐含在毛泽东、夏衍和姚文元给出的同余中。在本文中,我们在 NT(r, 7, n) 和 \(M_{\omega }(r,7,n)\) 上建立了几个新的同余。特别是,我们证明了六个类似于 "拉马努强最美等式 "的等式,并隐含了车恩的六个全等。
New Identities Associated with Ranks and Cranks of Partitions Modulo 7
Beck introduced two important partition statistics NT(r, m, n) and \(M_{\omega }(r,m,n)\) which count the total number of parts in the partitions of n with rank congruent to r modulo m and the total number of ones in the partitions of n with crank congruent to r modulo m, respectively. Andrews confirmed two conjectures of Beck on congruences of NT(r, m, n). Inspired by Andrews’ work, Chern discovered a number of congruences modulo 5, 7, 11 and 13 of NT(r, m, n) and \(M_{\omega }(r,m,n) \). Recently, Mao, and Xia, Yan and Yao established several identities on NT(r, 7, n) and \(M_{\omega }(r,7,n)\) which yield some congruences modulo 7 due to Chern. Unfortunately, there are six congruences modulo 7 of Chern which are not implied by the identities given by Mao, and Xia, Yan and Yao. In this paper, we establish several new identities on NT(r, 7, n) and \(M_{\omega }(r,7,n)\). In particular, we prove six identities which are analogous to “Ramanujan’s most beautiful identity”and imply Chern’s six congruences.
期刊介绍:
Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.