弗罗贝尼斯规范中的最近图拉普拉卡方

IF 1.8 3区 数学 Q1 MATHEMATICS
Kazuhiro Sato, Masato Suzuki
{"title":"弗罗贝尼斯规范中的最近图拉普拉卡方","authors":"Kazuhiro Sato, Masato Suzuki","doi":"10.1002/nla.2578","DOIUrl":null,"url":null,"abstract":"We address the problem of finding the nearest graph Laplacian to a given matrix, with the distance measured using the Frobenius norm. Specifically, for the directed graph Laplacian, we propose two novel algorithms by reformulating the problem as convex quadratic optimization problems with a special structure: one based on the active set method and the other on direct computation of Karush–Kuhn–Tucker points. The proposed algorithms can be applied to system identification and model reduction problems involving Laplacian dynamics. We demonstrate that these algorithms possess lower time complexities and the finite termination property, unlike the interior point method and V‐FISTA, the latter of which is an accelerated projected gradient method. Our numerical experiments confirm the effectiveness of the proposed algorithms.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":"4 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The nearest graph Laplacian in Frobenius norm\",\"authors\":\"Kazuhiro Sato, Masato Suzuki\",\"doi\":\"10.1002/nla.2578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of finding the nearest graph Laplacian to a given matrix, with the distance measured using the Frobenius norm. Specifically, for the directed graph Laplacian, we propose two novel algorithms by reformulating the problem as convex quadratic optimization problems with a special structure: one based on the active set method and the other on direct computation of Karush–Kuhn–Tucker points. The proposed algorithms can be applied to system identification and model reduction problems involving Laplacian dynamics. We demonstrate that these algorithms possess lower time complexities and the finite termination property, unlike the interior point method and V‐FISTA, the latter of which is an accelerated projected gradient method. Our numerical experiments confirm the effectiveness of the proposed algorithms.\",\"PeriodicalId\":49731,\"journal\":{\"name\":\"Numerical Linear Algebra with Applications\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Linear Algebra with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/nla.2578\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2578","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们要解决的问题是找到与给定矩阵最接近的图拉普拉奇,其距离用弗罗贝尼斯规范测量。具体来说,对于有向图拉普拉斯,我们提出了两种新算法,将问题重新表述为具有特殊结构的凸二次优化问题:一种基于主动集方法,另一种基于直接计算 Karush-Kuhn-Tucker 点。所提出的算法可应用于涉及拉普拉斯动力学的系统识别和模型还原问题。我们证明,这些算法具有较低的时间复杂性和有限终止特性,与内点法和 V-FISTA 不同,后者是一种加速投影梯度法。我们的数值实验证实了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The nearest graph Laplacian in Frobenius norm
We address the problem of finding the nearest graph Laplacian to a given matrix, with the distance measured using the Frobenius norm. Specifically, for the directed graph Laplacian, we propose two novel algorithms by reformulating the problem as convex quadratic optimization problems with a special structure: one based on the active set method and the other on direct computation of Karush–Kuhn–Tucker points. The proposed algorithms can be applied to system identification and model reduction problems involving Laplacian dynamics. We demonstrate that these algorithms possess lower time complexities and the finite termination property, unlike the interior point method and V‐FISTA, the latter of which is an accelerated projected gradient method. Our numerical experiments confirm the effectiveness of the proposed algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
2.30%
发文量
50
审稿时长
12 months
期刊介绍: Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review. Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects. Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信