分数中值及其最大函数

Yohei Tsutsui
{"title":"分数中值及其最大函数","authors":"Yohei Tsutsui","doi":"arxiv-2407.17700","DOIUrl":null,"url":null,"abstract":"In this article, we introduce the fractional medians, give an expression of\nthe set of all fractional medians in terms of non-increasing rearrangements and\nthen investigate mapping properties of the fractional maximal operators defined\nby such medians. The maximal operator is a generalization of that in Stromberg.\nIt turns out that our maximal operator is a more smooth operator than the usual\nfractional maximal operator. Further, we give another proof of the embedding\nfrom $BV$ to $L^{n/(n-1),1}$ due to Alvino by using the usual medians.","PeriodicalId":501145,"journal":{"name":"arXiv - MATH - Classical Analysis and ODEs","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional medians and their maximal functions\",\"authors\":\"Yohei Tsutsui\",\"doi\":\"arxiv-2407.17700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we introduce the fractional medians, give an expression of\\nthe set of all fractional medians in terms of non-increasing rearrangements and\\nthen investigate mapping properties of the fractional maximal operators defined\\nby such medians. The maximal operator is a generalization of that in Stromberg.\\nIt turns out that our maximal operator is a more smooth operator than the usual\\nfractional maximal operator. Further, we give another proof of the embedding\\nfrom $BV$ to $L^{n/(n-1),1}$ due to Alvino by using the usual medians.\",\"PeriodicalId\":501145,\"journal\":{\"name\":\"arXiv - MATH - Classical Analysis and ODEs\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.17700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了分数中值,给出了所有分数中值集合的非递增重排表达式,然后研究了由这些中值定义的分数最大算子的映射性质。事实证明,我们的最大算子是一个比通常的分数最大算子更平滑的算子。此外,我们还利用通常的中值给出了阿尔维诺提出的从 $BV$ 到 $L^{n/(n-1),1}$ 的嵌入的另一个证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional medians and their maximal functions
In this article, we introduce the fractional medians, give an expression of the set of all fractional medians in terms of non-increasing rearrangements and then investigate mapping properties of the fractional maximal operators defined by such medians. The maximal operator is a generalization of that in Stromberg. It turns out that our maximal operator is a more smooth operator than the usual fractional maximal operator. Further, we give another proof of the embedding from $BV$ to $L^{n/(n-1),1}$ due to Alvino by using the usual medians.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信