随机算法分布的收敛性:部分可分离优化的案例

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
D. Russell Luke
{"title":"随机算法分布的收敛性:部分可分离优化的案例","authors":"D. Russell Luke","doi":"10.1007/s10107-024-02124-w","DOIUrl":null,"url":null,"abstract":"<p>We present a Markov-chain analysis of blockwise-stochastic algorithms for solving partially block-separable optimization problems. Our main contributions to the extensive literature on these methods are statements about the Markov operators and distributions behind the iterates of stochastic algorithms, and in particular the regularity of Markov operators and rates of convergence of the distributions of the corresponding Markov chains. This provides a detailed characterization of the moments of the sequences beyond just the expected behavior. This also serves as a case study of how randomization restores favorable properties to algorithms that iterations of only partial information destroys. We demonstrate this on stochastic blockwise implementations of the forward–backward and Douglas–Rachford algorithms for nonconvex (and, as a special case, convex), nonsmooth optimization.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence in distribution of randomized algorithms: the case of partially separable optimization\",\"authors\":\"D. Russell Luke\",\"doi\":\"10.1007/s10107-024-02124-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a Markov-chain analysis of blockwise-stochastic algorithms for solving partially block-separable optimization problems. Our main contributions to the extensive literature on these methods are statements about the Markov operators and distributions behind the iterates of stochastic algorithms, and in particular the regularity of Markov operators and rates of convergence of the distributions of the corresponding Markov chains. This provides a detailed characterization of the moments of the sequences beyond just the expected behavior. This also serves as a case study of how randomization restores favorable properties to algorithms that iterations of only partial information destroys. We demonstrate this on stochastic blockwise implementations of the forward–backward and Douglas–Rachford algorithms for nonconvex (and, as a special case, convex), nonsmooth optimization.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02124-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02124-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们对求解部分分块优化问题的分块随机算法进行了马尔可夫链分析。对于有关这些方法的大量文献,我们的主要贡献是对随机算法迭代后面的马尔可夫算子和分布的说明,特别是马尔可夫算子的正则性和相应马尔可夫链分布的收敛率。这提供了序列矩的详细特征,而不仅仅是预期行为。这也是一个案例研究,说明随机化如何恢复算法的有利特性,而仅部分信息的迭代会破坏这些特性。我们在非凸(以及作为特例的凸)、非光滑优化的前向后向算法和道格拉斯-拉赫福德算法的随机顺时针实现上证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Convergence in distribution of randomized algorithms: the case of partially separable optimization

Convergence in distribution of randomized algorithms: the case of partially separable optimization

We present a Markov-chain analysis of blockwise-stochastic algorithms for solving partially block-separable optimization problems. Our main contributions to the extensive literature on these methods are statements about the Markov operators and distributions behind the iterates of stochastic algorithms, and in particular the regularity of Markov operators and rates of convergence of the distributions of the corresponding Markov chains. This provides a detailed characterization of the moments of the sequences beyond just the expected behavior. This also serves as a case study of how randomization restores favorable properties to algorithms that iterations of only partial information destroys. We demonstrate this on stochastic blockwise implementations of the forward–backward and Douglas–Rachford algorithms for nonconvex (and, as a special case, convex), nonsmooth optimization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信