波动压力梯度和波纹表面对风力涡轮机输出功率的影响

IF 2.1 4区 工程技术
Hamzeh Duwairi, Nesreen Sukkar, Mohammad Alrbai
{"title":"波动压力梯度和波纹表面对风力涡轮机输出功率的影响","authors":"Hamzeh Duwairi, Nesreen Sukkar, Mohammad Alrbai","doi":"10.1177/16878132241263471","DOIUrl":null,"url":null,"abstract":"This paper investigates the effect of corrugated surfaces on the wind turbines power output for both laminar and turbulent flows. Conservation principles including continuity and momentum equations, wind turbine power equations, and the corrugated surface equation have been implemented to build up a theoretical model then which has been solved using MATLAB. This model simulates wind turbines power output and analyzes several case studies implementing different parameters such as air pressure wave amplitude (P<jats:sub>o</jats:sub>), air wave fluctuation frequency (n), and wind layer turbulence (b). Also, different complex terrains in two main scenarios representing two different positions (X) of the wind turbine are analyzed. This analysis indicates the importance of wind turbines micro siting. In addition, it is found that increasing the pressure ratio increased wind turbine power output, while increasing the frequency decreased the power ratio of the wind turbines for both laminar and turbulent flow conditions. Increasing turbulence for the turbulent model increased the power ratio.","PeriodicalId":7357,"journal":{"name":"Advances in Mechanical Engineering","volume":"37 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluctuating pressure gradients and corrugated surfaces effects on wind turbines power output\",\"authors\":\"Hamzeh Duwairi, Nesreen Sukkar, Mohammad Alrbai\",\"doi\":\"10.1177/16878132241263471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the effect of corrugated surfaces on the wind turbines power output for both laminar and turbulent flows. Conservation principles including continuity and momentum equations, wind turbine power equations, and the corrugated surface equation have been implemented to build up a theoretical model then which has been solved using MATLAB. This model simulates wind turbines power output and analyzes several case studies implementing different parameters such as air pressure wave amplitude (P<jats:sub>o</jats:sub>), air wave fluctuation frequency (n), and wind layer turbulence (b). Also, different complex terrains in two main scenarios representing two different positions (X) of the wind turbine are analyzed. This analysis indicates the importance of wind turbines micro siting. In addition, it is found that increasing the pressure ratio increased wind turbine power output, while increasing the frequency decreased the power ratio of the wind turbines for both laminar and turbulent flow conditions. Increasing turbulence for the turbulent model increased the power ratio.\",\"PeriodicalId\":7357,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132241263471\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132241263471","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了波纹表面对层流和紊流风力涡轮机输出功率的影响。采用连续性和动量方程、风力涡轮机功率方程以及波纹表面方程等守恒原理建立了一个理论模型,然后使用 MATLAB 对其进行求解。该模型模拟了风力涡轮机的功率输出,并分析了多个采用不同参数的案例研究,如气压波振幅 (Po)、气压波波动频率 (n) 和风层湍流 (b)。此外,还分析了代表风力涡轮机两个不同位置 (X) 的两个主要方案中的不同复杂地形。该分析表明了风力涡轮机微观选址的重要性。此外,在层流和湍流条件下,增加压力比会增加风力发电机的功率输出,而增加频率则会降低风力发电机的功率比。在湍流模型中,增加湍流度可提高功率比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fluctuating pressure gradients and corrugated surfaces effects on wind turbines power output
This paper investigates the effect of corrugated surfaces on the wind turbines power output for both laminar and turbulent flows. Conservation principles including continuity and momentum equations, wind turbine power equations, and the corrugated surface equation have been implemented to build up a theoretical model then which has been solved using MATLAB. This model simulates wind turbines power output and analyzes several case studies implementing different parameters such as air pressure wave amplitude (Po), air wave fluctuation frequency (n), and wind layer turbulence (b). Also, different complex terrains in two main scenarios representing two different positions (X) of the wind turbine are analyzed. This analysis indicates the importance of wind turbines micro siting. In addition, it is found that increasing the pressure ratio increased wind turbine power output, while increasing the frequency decreased the power ratio of the wind turbines for both laminar and turbulent flow conditions. Increasing turbulence for the turbulent model increased the power ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Mechanical Engineering
Advances in Mechanical Engineering Engineering-Mechanical Engineering
自引率
4.80%
发文量
353
期刊介绍: Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信