{"title":"化学反应性非牛顿流体流经具有活化能影响的垂直微通道:数值研究","authors":"Ajjanna Roja, Pudhari Srilatha, Umair Khan, Anuar Ishak, Anjali Verma, Javare Gowda Rekha, Md Irfanul Haque Siddiqui","doi":"10.1177/16878132241261472","DOIUrl":null,"url":null,"abstract":"This work examines the second law analysis of an electrically conducting reactive third-grade fluid flow embedded with the porous medium in a microchannel with the influence of variable thermal conductivity, activation energy, viscous dissipation, joule heating, and radiative heat flux. A suitable non-dimensional variable is included into the governing equations to transform them into an ensemble of equations that are devoid of dimensions. The acquired equations are then tackled using the Runge Kutta Felhberg 4th and 5th order (RKF-45) approach in conjunction with the shooting methodology. Through comparison with the current results, the numerical results are verified, which provides a good agreement. From the present outcomes, it is established that the entropy generation is supreme for the viscous heating constraint, variable thermal conductivity, Frank Kameneski, heat source ratio parameter and third-grade fluid material constraint. The Bejan number boosts up with larger values of activation energy, and Frank Kameneski constraint and the decreasing nature is noticed for increasing third-grade material parameter, viscous heating parameter. With magnetism, the fluid’s velocity slows down because of a resistive force. A similar impact in the channel on velocity is noticed for larger third-grade fluid, activation energy parameter, and Frank-Kameniski parameters and increasing behavior is noticed for variable thermal conductivity, and permeability parameter. Further, it is cleared that the variable thermal conductivity assumption in the channel plate leads to a significant under prediction of the irreversibility rate.","PeriodicalId":7357,"journal":{"name":"Advances in Mechanical Engineering","volume":"64 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemically reactive non-Newtonian fluid flow through a vertical microchannel with activation energy impacts: A numerical investigation\",\"authors\":\"Ajjanna Roja, Pudhari Srilatha, Umair Khan, Anuar Ishak, Anjali Verma, Javare Gowda Rekha, Md Irfanul Haque Siddiqui\",\"doi\":\"10.1177/16878132241261472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work examines the second law analysis of an electrically conducting reactive third-grade fluid flow embedded with the porous medium in a microchannel with the influence of variable thermal conductivity, activation energy, viscous dissipation, joule heating, and radiative heat flux. A suitable non-dimensional variable is included into the governing equations to transform them into an ensemble of equations that are devoid of dimensions. The acquired equations are then tackled using the Runge Kutta Felhberg 4th and 5th order (RKF-45) approach in conjunction with the shooting methodology. Through comparison with the current results, the numerical results are verified, which provides a good agreement. From the present outcomes, it is established that the entropy generation is supreme for the viscous heating constraint, variable thermal conductivity, Frank Kameneski, heat source ratio parameter and third-grade fluid material constraint. The Bejan number boosts up with larger values of activation energy, and Frank Kameneski constraint and the decreasing nature is noticed for increasing third-grade material parameter, viscous heating parameter. With magnetism, the fluid’s velocity slows down because of a resistive force. A similar impact in the channel on velocity is noticed for larger third-grade fluid, activation energy parameter, and Frank-Kameniski parameters and increasing behavior is noticed for variable thermal conductivity, and permeability parameter. Further, it is cleared that the variable thermal conductivity assumption in the channel plate leads to a significant under prediction of the irreversibility rate.\",\"PeriodicalId\":7357,\"journal\":{\"name\":\"Advances in Mechanical Engineering\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/16878132241261472\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/16878132241261472","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Chemically reactive non-Newtonian fluid flow through a vertical microchannel with activation energy impacts: A numerical investigation
This work examines the second law analysis of an electrically conducting reactive third-grade fluid flow embedded with the porous medium in a microchannel with the influence of variable thermal conductivity, activation energy, viscous dissipation, joule heating, and radiative heat flux. A suitable non-dimensional variable is included into the governing equations to transform them into an ensemble of equations that are devoid of dimensions. The acquired equations are then tackled using the Runge Kutta Felhberg 4th and 5th order (RKF-45) approach in conjunction with the shooting methodology. Through comparison with the current results, the numerical results are verified, which provides a good agreement. From the present outcomes, it is established that the entropy generation is supreme for the viscous heating constraint, variable thermal conductivity, Frank Kameneski, heat source ratio parameter and third-grade fluid material constraint. The Bejan number boosts up with larger values of activation energy, and Frank Kameneski constraint and the decreasing nature is noticed for increasing third-grade material parameter, viscous heating parameter. With magnetism, the fluid’s velocity slows down because of a resistive force. A similar impact in the channel on velocity is noticed for larger third-grade fluid, activation energy parameter, and Frank-Kameniski parameters and increasing behavior is noticed for variable thermal conductivity, and permeability parameter. Further, it is cleared that the variable thermal conductivity assumption in the channel plate leads to a significant under prediction of the irreversibility rate.
期刊介绍:
Advances in Mechanical Engineering (AIME) is a JCR Ranked, peer-reviewed, open access journal which publishes a wide range of original research and review articles. The journal Editorial Board welcomes manuscripts in both fundamental and applied research areas, and encourages submissions which contribute novel and innovative insights to the field of mechanical engineering