Ana C. Martinez, Alexis Maurel, Bharat Yelamanchi, A. Alec Talin, Sylvie Grugeon, Stéphane Panier, Loic Dupont, Ana Aranzola, Eva Schiaffino, Sreeprasad T. Sreenivasan, Pedro Cortes, Eric MacDonald
{"title":"将铜集流器的 3D 打印与结构性锂离子电池电极材料的电泳沉积相结合","authors":"Ana C. Martinez, Alexis Maurel, Bharat Yelamanchi, A. Alec Talin, Sylvie Grugeon, Stéphane Panier, Loic Dupont, Ana Aranzola, Eva Schiaffino, Sreeprasad T. Sreenivasan, Pedro Cortes, Eric MacDonald","doi":"10.1007/s40436-024-00514-z","DOIUrl":null,"url":null,"abstract":"<p>Serving as a proof of concept, additive manufacturing and electrophoretic deposition are leveraged in this work to enable structural lithium-ion batteries with load-bearing and energy storage dual functionality. The preparation steps of a complex 3D printed copper current collector, involving the formulation of a photocurable resin formulation, as well as the vat photopolymerization process followed by a precursors-based solution soaking step and thermal post-processing are presented. Compression and microhardness testing onto the resulting 3D printed copper current collector are shown to demonstrate adequate mechanical performance. Electrophoretic deposition of graphite as a negative electrode active material and other additives was then performed onto the 3D printed copper collector, with the intention to demonstrate energy storage functionality. Half-cell electrochemical cycling of the 3D multi-material current collector/negative electrode versus lithium metal finally demonstrates that structural battery components can be successfully obtained through this approach.</p>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining 3D printing of copper current collectors and electrophoretic deposition of electrode materials for structural lithium-ion batteries\",\"authors\":\"Ana C. Martinez, Alexis Maurel, Bharat Yelamanchi, A. Alec Talin, Sylvie Grugeon, Stéphane Panier, Loic Dupont, Ana Aranzola, Eva Schiaffino, Sreeprasad T. Sreenivasan, Pedro Cortes, Eric MacDonald\",\"doi\":\"10.1007/s40436-024-00514-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Serving as a proof of concept, additive manufacturing and electrophoretic deposition are leveraged in this work to enable structural lithium-ion batteries with load-bearing and energy storage dual functionality. The preparation steps of a complex 3D printed copper current collector, involving the formulation of a photocurable resin formulation, as well as the vat photopolymerization process followed by a precursors-based solution soaking step and thermal post-processing are presented. Compression and microhardness testing onto the resulting 3D printed copper current collector are shown to demonstrate adequate mechanical performance. Electrophoretic deposition of graphite as a negative electrode active material and other additives was then performed onto the 3D printed copper collector, with the intention to demonstrate energy storage functionality. Half-cell electrochemical cycling of the 3D multi-material current collector/negative electrode versus lithium metal finally demonstrates that structural battery components can be successfully obtained through this approach.</p>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40436-024-00514-z\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40436-024-00514-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Combining 3D printing of copper current collectors and electrophoretic deposition of electrode materials for structural lithium-ion batteries
Serving as a proof of concept, additive manufacturing and electrophoretic deposition are leveraged in this work to enable structural lithium-ion batteries with load-bearing and energy storage dual functionality. The preparation steps of a complex 3D printed copper current collector, involving the formulation of a photocurable resin formulation, as well as the vat photopolymerization process followed by a precursors-based solution soaking step and thermal post-processing are presented. Compression and microhardness testing onto the resulting 3D printed copper current collector are shown to demonstrate adequate mechanical performance. Electrophoretic deposition of graphite as a negative electrode active material and other additives was then performed onto the 3D printed copper collector, with the intention to demonstrate energy storage functionality. Half-cell electrochemical cycling of the 3D multi-material current collector/negative electrode versus lithium metal finally demonstrates that structural battery components can be successfully obtained through this approach.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.