{"title":"稳定映射和双曲链路","authors":"Furutani,Ryoga, Koda,Yuya","doi":"10.4310/cag.2023.v31.n6.a3","DOIUrl":null,"url":null,"abstract":"A stable map of a closed orientable 3-manifold into the real plane is called a stable map of a link in the manifold if the link is contained in the set of definite fold points. We give a complete characterization of the hyperbolic links in the $3$-sphere that admit stable maps into the real plane with exactly one (connected component of a) fiber having two singular points.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"5 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable maps and hyperbolic links\",\"authors\":\"Furutani,Ryoga, Koda,Yuya\",\"doi\":\"10.4310/cag.2023.v31.n6.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A stable map of a closed orientable 3-manifold into the real plane is called a stable map of a link in the manifold if the link is contained in the set of definite fold points. We give a complete characterization of the hyperbolic links in the $3$-sphere that admit stable maps into the real plane with exactly one (connected component of a) fiber having two singular points.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2023.v31.n6.a3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n6.a3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A stable map of a closed orientable 3-manifold into the real plane is called a stable map of a link in the manifold if the link is contained in the set of definite fold points. We give a complete characterization of the hyperbolic links in the $3$-sphere that admit stable maps into the real plane with exactly one (connected component of a) fiber having two singular points.
期刊介绍:
Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.