从边界距离图确定紧凑芬斯勒流形和弹性中的逆问题

IF 0.7 4区 数学 Q2 MATHEMATICS
de Hoop,Maarten V., Ilmavirta,Joonas, Lassas,Matti, Saksala,Teemu
{"title":"从边界距离图确定紧凑芬斯勒流形和弹性中的逆问题","authors":"de Hoop,Maarten V., Ilmavirta,Joonas, Lassas,Matti, Saksala,Teemu","doi":"10.4310/cag.2023.v31.n7.a4","DOIUrl":null,"url":null,"abstract":"We prove that the boundary distance map of a smooth compact Finsler manifold with smooth boundary determines its topological and differentiable structures. We construct the optimal fiberwise open subset of its tangent bundle and show that the boundary distance map determines the Finsler function in this set but not in its exterior. If the Finsler function is fiberwise real analytic, it is determined uniquely. We also discuss the smoothness of the distance function between interior and boundary points. We recall how the fastest $qP$-polarized waves in anisotropic elastic medium are a given as solutions of the second order hyperbolic pseudodifferential equation $(\\frac{\\partial ^{2}}{\\partial t^{2}}-\\lambda ^{1}(x,D))u(t,x)=h(t,x)$ on ${\\mathbb R}^{1+3}$, where $\\sqrt{\\lambda ^{1}}$ is the Legendre transform of a fiberwise real analytic Finsler function $F$ on ${\\mathbb R}^{3}$. If $M \\subset {\\mathbb R}^{3}$ is a $F$-convex smooth bounded domain we say that a travel time of $u$ to $z \\in \\partial M$ is the first time $t>0$ when the wavefront set of $u$ arrives in $(t,z)$. The aforementioned geometric result can then be utilized to determine the isometry class of $(\\overline M,F)$ if we have measured a large amount of travel times of $qP$-polarized waves, issued from a dense set of unknown interior point sources on $M$.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"41 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of a compact Finsler manifold from its boundary distance map and an inverse problem in elasticity\",\"authors\":\"de Hoop,Maarten V., Ilmavirta,Joonas, Lassas,Matti, Saksala,Teemu\",\"doi\":\"10.4310/cag.2023.v31.n7.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the boundary distance map of a smooth compact Finsler manifold with smooth boundary determines its topological and differentiable structures. We construct the optimal fiberwise open subset of its tangent bundle and show that the boundary distance map determines the Finsler function in this set but not in its exterior. If the Finsler function is fiberwise real analytic, it is determined uniquely. We also discuss the smoothness of the distance function between interior and boundary points. We recall how the fastest $qP$-polarized waves in anisotropic elastic medium are a given as solutions of the second order hyperbolic pseudodifferential equation $(\\\\frac{\\\\partial ^{2}}{\\\\partial t^{2}}-\\\\lambda ^{1}(x,D))u(t,x)=h(t,x)$ on ${\\\\mathbb R}^{1+3}$, where $\\\\sqrt{\\\\lambda ^{1}}$ is the Legendre transform of a fiberwise real analytic Finsler function $F$ on ${\\\\mathbb R}^{3}$. If $M \\\\subset {\\\\mathbb R}^{3}$ is a $F$-convex smooth bounded domain we say that a travel time of $u$ to $z \\\\in \\\\partial M$ is the first time $t>0$ when the wavefront set of $u$ arrives in $(t,z)$. The aforementioned geometric result can then be utilized to determine the isometry class of $(\\\\overline M,F)$ if we have measured a large amount of travel times of $qP$-polarized waves, issued from a dense set of unknown interior point sources on $M$.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2023.v31.n7.a4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n7.a4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了具有光滑边界的光滑紧凑 Finsler 流形的边界距离图决定了其拓扑结构和可微分结构。我们构造了其切线束的最优纤维开子集,并证明边界距离映射决定了该集合中的 Finsler 函数,但不决定其外部的 Finsler 函数。如果芬斯勒函数是纤维实解析的,那么它就是唯一确定的。我们还讨论了内部点和边界点之间距离函数的平滑性。我们回顾一下各向异性弹性介质中最快的 $qP$ 极化波是如何作为二阶双曲伪微分方程 $(\frac\partial ^{2}}{\partial t^{2}}-\lambda ^{1}(x. D))u(t,x) 的解给出的、D))u(t,x)=h(t,x)$在 ${\mathbb R}^{1+3}$ 上,其中 $\sqrt{lambda ^{1}$ 是纤维实解析 Finsler 函数 $F$ 在 ${\mathbb R}^{3}$ 上的 Legendre 变换。如果 $M (子集 {\mathbb R}^{3}$ 是一个 $F$-凸光滑有界域,我们就可以说,$u$ 在部分 M$ 中到达 $z 的旅行时间就是 $u$ 的波前集到达 $(t,z)$ 的第一个时间 $t>0$。如果我们测量了大量从 $M$ 上密集的未知内部点源发出的 $qP$ 偏振波的传播时间,就可以利用上述几何结果来确定 $(\overline M,F)$ 的等距类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of a compact Finsler manifold from its boundary distance map and an inverse problem in elasticity
We prove that the boundary distance map of a smooth compact Finsler manifold with smooth boundary determines its topological and differentiable structures. We construct the optimal fiberwise open subset of its tangent bundle and show that the boundary distance map determines the Finsler function in this set but not in its exterior. If the Finsler function is fiberwise real analytic, it is determined uniquely. We also discuss the smoothness of the distance function between interior and boundary points. We recall how the fastest $qP$-polarized waves in anisotropic elastic medium are a given as solutions of the second order hyperbolic pseudodifferential equation $(\frac{\partial ^{2}}{\partial t^{2}}-\lambda ^{1}(x,D))u(t,x)=h(t,x)$ on ${\mathbb R}^{1+3}$, where $\sqrt{\lambda ^{1}}$ is the Legendre transform of a fiberwise real analytic Finsler function $F$ on ${\mathbb R}^{3}$. If $M \subset {\mathbb R}^{3}$ is a $F$-convex smooth bounded domain we say that a travel time of $u$ to $z \in \partial M$ is the first time $t>0$ when the wavefront set of $u$ arrives in $(t,z)$. The aforementioned geometric result can then be utilized to determine the isometry class of $(\overline M,F)$ if we have measured a large amount of travel times of $qP$-polarized waves, issued from a dense set of unknown interior point sources on $M$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信