奇异双曲度量和负次谐函数

IF 0.7 4区 数学 Q2 MATHEMATICS
Feng,Yu, Shi,Yiqian, Song,Jijian, Xu,Bin
{"title":"奇异双曲度量和负次谐函数","authors":"Feng,Yu, Shi,Yiqian, Song,Jijian, Xu,Bin","doi":"10.4310/cag.2023.v31.n7.a7","DOIUrl":null,"url":null,"abstract":"We propose a conjecture that the monodromy group of a singular hyperbolic metric on a non-hyperbolic Riemann surface is Zariski dense in $\\text{PSL}(2,\\,{\\mathbb R})$. By using meromorphic differentials and affine connections, we obtain evidence of the conjecture that the monodromy group of the singular hyperbolic metric cannot be contained in four classes of one-dimensional Lie subgroups of $\\text{PSL}(2,\\,{\\mathbb R})$. Moreover, we confirm the conjecture if the Riemann surface is the once punctured Riemann sphere, the twice punctured Riemann sphere, a once punctured torus or a compact Riemann surface.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"26 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular hyperbolic metrics and negative subharmonic functions\",\"authors\":\"Feng,Yu, Shi,Yiqian, Song,Jijian, Xu,Bin\",\"doi\":\"10.4310/cag.2023.v31.n7.a7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a conjecture that the monodromy group of a singular hyperbolic metric on a non-hyperbolic Riemann surface is Zariski dense in $\\\\text{PSL}(2,\\\\,{\\\\mathbb R})$. By using meromorphic differentials and affine connections, we obtain evidence of the conjecture that the monodromy group of the singular hyperbolic metric cannot be contained in four classes of one-dimensional Lie subgroups of $\\\\text{PSL}(2,\\\\,{\\\\mathbb R})$. Moreover, we confirm the conjecture if the Riemann surface is the once punctured Riemann sphere, the twice punctured Riemann sphere, a once punctured torus or a compact Riemann surface.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2023.v31.n7.a7\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n7.a7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个猜想:非双曲黎曼曲面上奇异双曲度量的单旋转群在 $text{PSL}(2,\,{\mathbb R})$ 中是扎里斯基密集的。通过使用微分和仿射连接,我们得到了奇异双曲度量的单色群不能包含在 $\text{PSL}(2,\,{\mathbb R})$ 的四类一维李子群中这一猜想的证据。此外,如果黎曼曲面是一次穿刺黎曼球面、两次穿刺黎曼球面、一次穿刺环面或紧凑黎曼曲面,我们就证实了这一猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singular hyperbolic metrics and negative subharmonic functions
We propose a conjecture that the monodromy group of a singular hyperbolic metric on a non-hyperbolic Riemann surface is Zariski dense in $\text{PSL}(2,\,{\mathbb R})$. By using meromorphic differentials and affine connections, we obtain evidence of the conjecture that the monodromy group of the singular hyperbolic metric cannot be contained in four classes of one-dimensional Lie subgroups of $\text{PSL}(2,\,{\mathbb R})$. Moreover, we confirm the conjecture if the Riemann surface is the once punctured Riemann sphere, the twice punctured Riemann sphere, a once punctured torus or a compact Riemann surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信