双相热导体中超平面的特征u

IF 0.7 4区 数学 Q2 MATHEMATICS
Cavallina,Lorenzo, Sakaguchi,Shigeru, Udagawa,Seiichi
{"title":"双相热导体中超平面的特征u","authors":"Cavallina,Lorenzo, Sakaguchi,Shigeru, Udagawa,Seiichi","doi":"10.4310/cag.2023.v31.n7.a9","DOIUrl":null,"url":null,"abstract":"We consider the Cauchy problem for the heat diffusion equation in the whole Euclidean space consisting of two media with different constant conductivities, where initially one has temperature 0 and the other has temperature 1. Suppose that the interface is connected and uniformly of class $C^{6}$. We show that if the interface has a time-invariant constant temperature, then it must be a hyperplane.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"10 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A characterization of a hyperplane in two-phase heat conductorsu\",\"authors\":\"Cavallina,Lorenzo, Sakaguchi,Shigeru, Udagawa,Seiichi\",\"doi\":\"10.4310/cag.2023.v31.n7.a9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the Cauchy problem for the heat diffusion equation in the whole Euclidean space consisting of two media with different constant conductivities, where initially one has temperature 0 and the other has temperature 1. Suppose that the interface is connected and uniformly of class $C^{6}$. We show that if the interface has a time-invariant constant temperature, then it must be a hyperplane.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2023.v31.n7.a9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n7.a9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在整个欧几里得空间中的热扩散方程的考奇问题,该空间由两种具有不同恒定传导性的介质组成,其中一种介质的初始温度为 0,另一种介质的初始温度为 1。假设界面是连通的,且均匀属于 $C^{6}$。我们将证明,如果界面具有时变恒温,那么它一定是一个超平面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A characterization of a hyperplane in two-phase heat conductorsu
We consider the Cauchy problem for the heat diffusion equation in the whole Euclidean space consisting of two media with different constant conductivities, where initially one has temperature 0 and the other has temperature 1. Suppose that the interface is connected and uniformly of class $C^{6}$. We show that if the interface has a time-invariant constant temperature, then it must be a hyperplane.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信