{"title":"关于有边界的渐近平坦流形的模空间和约束方程","authors":"Hirsch,Sven, Lesourd,Martin","doi":"10.4310/cag.2023.v31.n7.a8","DOIUrl":null,"url":null,"abstract":"Carlotto-Li have generalized Marques' path connectedness result for positive scalar curvature $R>0$ metrics on closed $3$-manifolds to the case of compact $3$-manifolds with $R>0$ and mean convex boundary $H>0$. Using their result, we show that the space of asymptotically flat metrics with nonnegative scalar curvature and mean convex boundary on $\\mathbb{R}^{3}\\backslash B^{3}$ is path connected. The argument bypasses Cerf's theorem, which was used in Marques' proof but which becomes inapplicable in the presence of a boundary. We also show path connectedness for a class of maximal initial data sets with marginally outer trapped boundary.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"19 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the moduli space of asymptotically flat manifolds with boundary and the constraint equations\",\"authors\":\"Hirsch,Sven, Lesourd,Martin\",\"doi\":\"10.4310/cag.2023.v31.n7.a8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carlotto-Li have generalized Marques' path connectedness result for positive scalar curvature $R>0$ metrics on closed $3$-manifolds to the case of compact $3$-manifolds with $R>0$ and mean convex boundary $H>0$. Using their result, we show that the space of asymptotically flat metrics with nonnegative scalar curvature and mean convex boundary on $\\\\mathbb{R}^{3}\\\\backslash B^{3}$ is path connected. The argument bypasses Cerf's theorem, which was used in Marques' proof but which becomes inapplicable in the presence of a boundary. We also show path connectedness for a class of maximal initial data sets with marginally outer trapped boundary.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2023.v31.n7.a8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n7.a8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the moduli space of asymptotically flat manifolds with boundary and the constraint equations
Carlotto-Li have generalized Marques' path connectedness result for positive scalar curvature $R>0$ metrics on closed $3$-manifolds to the case of compact $3$-manifolds with $R>0$ and mean convex boundary $H>0$. Using their result, we show that the space of asymptotically flat metrics with nonnegative scalar curvature and mean convex boundary on $\mathbb{R}^{3}\backslash B^{3}$ is path connected. The argument bypasses Cerf's theorem, which was used in Marques' proof but which becomes inapplicable in the presence of a boundary. We also show path connectedness for a class of maximal initial data sets with marginally outer trapped boundary.
期刊介绍:
Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.