谐波利玛窦流中的 I 型奇点分析

Pub Date : 2024-07-26 DOI:10.4310/cag.2023.v31.n7.a6
Di Matteo,Gianmichele
{"title":"谐波利玛窦流中的 I 型奇点分析","authors":"Di Matteo,Gianmichele","doi":"10.4310/cag.2023.v31.n7.a6","DOIUrl":null,"url":null,"abstract":"In [8], Enders, Müller and Topping showed that any blow up sequence of a Type I Ricci flow near a singular point converges to a non-trivial gradient Ricci soliton, leading them to conclude that for such flows all reasonable definitions of singular points agree with each other. We prove the analogous result for the harmonic Ricci flow, generalizing in particular results of Guo, Huang and Phong [11] and Shi [25]. In order to obtain our result, we develop refined compactness theorems, a new pseudolocality theorem, and a notion of reduced length and volume based at the singular time for the harmonic Ricci flow.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Type I singularities in the harmonic Ricci flow\",\"authors\":\"Di Matteo,Gianmichele\",\"doi\":\"10.4310/cag.2023.v31.n7.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In [8], Enders, Müller and Topping showed that any blow up sequence of a Type I Ricci flow near a singular point converges to a non-trivial gradient Ricci soliton, leading them to conclude that for such flows all reasonable definitions of singular points agree with each other. We prove the analogous result for the harmonic Ricci flow, generalizing in particular results of Guo, Huang and Phong [11] and Shi [25]. In order to obtain our result, we develop refined compactness theorems, a new pseudolocality theorem, and a notion of reduced length and volume based at the singular time for the harmonic Ricci flow.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2023.v31.n7.a6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n7.a6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在[8]中,Enders、Müller 和 Topping 证明了第一类利玛窦流在奇异点附近的任何吹胀序列都收敛于一个非三维梯度利玛窦孤子,从而得出结论:对于这类流,所有合理的奇异点定义都是一致的。我们证明了谐波利玛窦流的类似结果,特别是推广了 Guo、Huang 和 Phong [11] 以及 Shi [25] 的结果。为了得到我们的结果,我们发展了精致紧凑性定理、新的伪位置定理以及基于谐波利玛窦流奇点时间的长度和体积减小概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Analysis of Type I singularities in the harmonic Ricci flow
In [8], Enders, Müller and Topping showed that any blow up sequence of a Type I Ricci flow near a singular point converges to a non-trivial gradient Ricci soliton, leading them to conclude that for such flows all reasonable definitions of singular points agree with each other. We prove the analogous result for the harmonic Ricci flow, generalizing in particular results of Guo, Huang and Phong [11] and Shi [25]. In order to obtain our result, we develop refined compactness theorems, a new pseudolocality theorem, and a notion of reduced length and volume based at the singular time for the harmonic Ricci flow.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信