{"title":"几何有限非正曲面上的角环拓扑学","authors":"Sergi Burniol Clotet","doi":"10.1007/s10711-024-00941-z","DOIUrl":null,"url":null,"abstract":"<p>We study the closure of horocycles on rank 1 nonpositively curved surfaces with finitely generated fundamental group. Each horocycle is closed or dense on a certain subset of the unit tangent bundle. In fact, we classify each half-horocycle in terms of the associated geodesic rays. We also determine the nonwandering set of the horocyclic flow and characterize the surfaces admitting a minimal set for this flow.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topology of horocycles on geometrically finite nonpositively curved surfaces\",\"authors\":\"Sergi Burniol Clotet\",\"doi\":\"10.1007/s10711-024-00941-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the closure of horocycles on rank 1 nonpositively curved surfaces with finitely generated fundamental group. Each horocycle is closed or dense on a certain subset of the unit tangent bundle. In fact, we classify each half-horocycle in terms of the associated geodesic rays. We also determine the nonwandering set of the horocyclic flow and characterize the surfaces admitting a minimal set for this flow.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00941-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00941-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Topology of horocycles on geometrically finite nonpositively curved surfaces
We study the closure of horocycles on rank 1 nonpositively curved surfaces with finitely generated fundamental group. Each horocycle is closed or dense on a certain subset of the unit tangent bundle. In fact, we classify each half-horocycle in terms of the associated geodesic rays. We also determine the nonwandering set of the horocyclic flow and characterize the surfaces admitting a minimal set for this flow.