几何有限非正曲面上的角环拓扑学

Pub Date : 2024-07-28 DOI:10.1007/s10711-024-00941-z
Sergi Burniol Clotet
{"title":"几何有限非正曲面上的角环拓扑学","authors":"Sergi Burniol Clotet","doi":"10.1007/s10711-024-00941-z","DOIUrl":null,"url":null,"abstract":"<p>We study the closure of horocycles on rank 1 nonpositively curved surfaces with finitely generated fundamental group. Each horocycle is closed or dense on a certain subset of the unit tangent bundle. In fact, we classify each half-horocycle in terms of the associated geodesic rays. We also determine the nonwandering set of the horocyclic flow and characterize the surfaces admitting a minimal set for this flow.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topology of horocycles on geometrically finite nonpositively curved surfaces\",\"authors\":\"Sergi Burniol Clotet\",\"doi\":\"10.1007/s10711-024-00941-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the closure of horocycles on rank 1 nonpositively curved surfaces with finitely generated fundamental group. Each horocycle is closed or dense on a certain subset of the unit tangent bundle. In fact, we classify each half-horocycle in terms of the associated geodesic rays. We also determine the nonwandering set of the horocyclic flow and characterize the surfaces admitting a minimal set for this flow.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00941-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00941-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究具有有限生成基群的 1 级非正曲曲面上的角循环闭合。每个角循环都在单位切线束的某个子集上封闭或密集。事实上,我们根据相关的大地射线对每个半角环进行了分类。我们还确定了角环流的非漫游集,并描述了容纳该流最小集的曲面的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Topology of horocycles on geometrically finite nonpositively curved surfaces

分享
查看原文
Topology of horocycles on geometrically finite nonpositively curved surfaces

We study the closure of horocycles on rank 1 nonpositively curved surfaces with finitely generated fundamental group. Each horocycle is closed or dense on a certain subset of the unit tangent bundle. In fact, we classify each half-horocycle in terms of the associated geodesic rays. We also determine the nonwandering set of the horocyclic flow and characterize the surfaces admitting a minimal set for this flow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信