{"title":"关于将亚历山德罗夫空间与里奇曲率下限粘合在一起","authors":"Kapovitch,Vitali, Ketterer,Christian, Sturm,Karl-Theodor","doi":"10.4310/cag.2023.v31.n6.a6","DOIUrl":null,"url":null,"abstract":"In this paper we prove that in the class of metric measure space with Alexandrov curvature bounded from below the Riemannian curvature-dimension condition $RCD^*(K,N)$ with $K\\in \\mathbb{R}$ & $N\\in [1,\\infty)$ is preserved under doubling and gluing constructions provided the weight in the measure is semiconcave.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"56 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On gluing Alexandrov spaces with lower Ricci curvature bounds\",\"authors\":\"Kapovitch,Vitali, Ketterer,Christian, Sturm,Karl-Theodor\",\"doi\":\"10.4310/cag.2023.v31.n6.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove that in the class of metric measure space with Alexandrov curvature bounded from below the Riemannian curvature-dimension condition $RCD^*(K,N)$ with $K\\\\in \\\\mathbb{R}$ & $N\\\\in [1,\\\\infty)$ is preserved under doubling and gluing constructions provided the weight in the measure is semiconcave.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2023.v31.n6.a6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n6.a6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们证明了在一类具有亚历山德罗夫曲率的度量空间中,只要度量中的权重是半凹的,那么在具有亚历山德罗夫曲率的度量空间中,黎曼曲率维度条件 $RCD^*(K,N)$ with $K\in \mathbb{R}$ & $N\in [1,\infty)$ 在加倍和粘合构造下是保留的。
On gluing Alexandrov spaces with lower Ricci curvature bounds
In this paper we prove that in the class of metric measure space with Alexandrov curvature bounded from below the Riemannian curvature-dimension condition $RCD^*(K,N)$ with $K\in \mathbb{R}$ & $N\in [1,\infty)$ is preserved under doubling and gluing constructions provided the weight in the measure is semiconcave.
期刊介绍:
Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.