作为洛伦兹长度空间的广义圆锥:因果性、曲率和奇异性定理

IF 0.7 4区 数学 Q2 MATHEMATICS
Alexander,Stephanie B., Graf,Melanie, Kunzinger,Michael, Sämann,Clemens
{"title":"作为洛伦兹长度空间的广义圆锥:因果性、曲率和奇异性定理","authors":"Alexander,Stephanie B., Graf,Melanie, Kunzinger,Michael, Sämann,Clemens","doi":"10.4310/cag.2023.v31.n6.a5","DOIUrl":null,"url":null,"abstract":"We study generalizations of Lorentzian warped products with one-dimensional base of the form $I\\times_f X$, where $I$ is an interval, $X$ is a length space and $f$ is a positive continuous function. These generalized cones furnish an important class of Lorentzian length spaces in the sense of [39], displaying optimal causality properties that allow for explicit descriptions of all underlying notions. In addition, synthetic sectional curvature bounds of generalized cones are directly related to metric curvature bounds of the fiber $X$. The interest in such spaces comes both from metric geometry and from General Relativity, where warped products underlie important cosmological models (FLRW spacetimes). Moreover, we prove singularity theorems for these spaces, showing that non-positive lower timelike curvature bounds imply the existence of incomplete timelike geodesics.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"46 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized cones as Lorentzian length spaces: Causality, curvature, and singularity theorems\",\"authors\":\"Alexander,Stephanie B., Graf,Melanie, Kunzinger,Michael, Sämann,Clemens\",\"doi\":\"10.4310/cag.2023.v31.n6.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study generalizations of Lorentzian warped products with one-dimensional base of the form $I\\\\times_f X$, where $I$ is an interval, $X$ is a length space and $f$ is a positive continuous function. These generalized cones furnish an important class of Lorentzian length spaces in the sense of [39], displaying optimal causality properties that allow for explicit descriptions of all underlying notions. In addition, synthetic sectional curvature bounds of generalized cones are directly related to metric curvature bounds of the fiber $X$. The interest in such spaces comes both from metric geometry and from General Relativity, where warped products underlie important cosmological models (FLRW spacetimes). Moreover, we prove singularity theorems for these spaces, showing that non-positive lower timelike curvature bounds imply the existence of incomplete timelike geodesics.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2023.v31.n6.a5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n6.a5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究洛伦兹翘积的广义,其一维基形式为 $I\times_f X$,其中 $I$ 是一个区间,$X$ 是一个长度空间,$f$ 是一个正连续函数。这些广义锥形提供了[39]意义上的一类重要洛伦兹长度空间,显示出最佳因果关系特性,允许对所有基本概念进行明确描述。此外,广义圆锥的合成截面曲率边界与纤维 $X$ 的度量曲率边界直接相关。对这类空间的兴趣既来自度量几何,也来自广义相对论,其中翘曲乘积是重要宇宙学模型(FLRW 空间)的基础。此外,我们还证明了这些空间的奇异性定理,表明非正的下时间线曲率边界意味着不完全时间线大地线的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized cones as Lorentzian length spaces: Causality, curvature, and singularity theorems
We study generalizations of Lorentzian warped products with one-dimensional base of the form $I\times_f X$, where $I$ is an interval, $X$ is a length space and $f$ is a positive continuous function. These generalized cones furnish an important class of Lorentzian length spaces in the sense of [39], displaying optimal causality properties that allow for explicit descriptions of all underlying notions. In addition, synthetic sectional curvature bounds of generalized cones are directly related to metric curvature bounds of the fiber $X$. The interest in such spaces comes both from metric geometry and from General Relativity, where warped products underlie important cosmological models (FLRW spacetimes). Moreover, we prove singularity theorems for these spaces, showing that non-positive lower timelike curvature bounds imply the existence of incomplete timelike geodesics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信