{"title":"作为洛伦兹长度空间的广义圆锥:因果性、曲率和奇异性定理","authors":"Alexander,Stephanie B., Graf,Melanie, Kunzinger,Michael, Sämann,Clemens","doi":"10.4310/cag.2023.v31.n6.a5","DOIUrl":null,"url":null,"abstract":"We study generalizations of Lorentzian warped products with one-dimensional base of the form $I\\times_f X$, where $I$ is an interval, $X$ is a length space and $f$ is a positive continuous function. These generalized cones furnish an important class of Lorentzian length spaces in the sense of [39], displaying optimal causality properties that allow for explicit descriptions of all underlying notions. In addition, synthetic sectional curvature bounds of generalized cones are directly related to metric curvature bounds of the fiber $X$. The interest in such spaces comes both from metric geometry and from General Relativity, where warped products underlie important cosmological models (FLRW spacetimes). Moreover, we prove singularity theorems for these spaces, showing that non-positive lower timelike curvature bounds imply the existence of incomplete timelike geodesics.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"46 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized cones as Lorentzian length spaces: Causality, curvature, and singularity theorems\",\"authors\":\"Alexander,Stephanie B., Graf,Melanie, Kunzinger,Michael, Sämann,Clemens\",\"doi\":\"10.4310/cag.2023.v31.n6.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study generalizations of Lorentzian warped products with one-dimensional base of the form $I\\\\times_f X$, where $I$ is an interval, $X$ is a length space and $f$ is a positive continuous function. These generalized cones furnish an important class of Lorentzian length spaces in the sense of [39], displaying optimal causality properties that allow for explicit descriptions of all underlying notions. In addition, synthetic sectional curvature bounds of generalized cones are directly related to metric curvature bounds of the fiber $X$. The interest in such spaces comes both from metric geometry and from General Relativity, where warped products underlie important cosmological models (FLRW spacetimes). Moreover, we prove singularity theorems for these spaces, showing that non-positive lower timelike curvature bounds imply the existence of incomplete timelike geodesics.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2023.v31.n6.a5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n6.a5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Generalized cones as Lorentzian length spaces: Causality, curvature, and singularity theorems
We study generalizations of Lorentzian warped products with one-dimensional base of the form $I\times_f X$, where $I$ is an interval, $X$ is a length space and $f$ is a positive continuous function. These generalized cones furnish an important class of Lorentzian length spaces in the sense of [39], displaying optimal causality properties that allow for explicit descriptions of all underlying notions. In addition, synthetic sectional curvature bounds of generalized cones are directly related to metric curvature bounds of the fiber $X$. The interest in such spaces comes both from metric geometry and from General Relativity, where warped products underlie important cosmological models (FLRW spacetimes). Moreover, we prove singularity theorems for these spaces, showing that non-positive lower timelike curvature bounds imply the existence of incomplete timelike geodesics.
期刊介绍:
Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.