{"title":"论涉及整个 $\\mathbb{R}^N$ 中 1 拉普拉斯算子的一类问题的多解存在性","authors":"Alves,Claudianor O.","doi":"10.4310/cag.2023.v31.n6.a4","DOIUrl":null,"url":null,"abstract":"In this work we use variational methods to prove the existence of multiple solutions for the following class of problem $$- \\epsilon \\Delta_1 u + V(x)\\frac{u}{|u|} = f(u) \\quad \\mbox{in} \\quad \\mathbb{R}^N, \\quad u \\in BV(\\mathbb{R}^N), $$ where $\\Delta_1$ is the $1-$Laplacian operator and $\\epsilon$ is a positive parameter. It is proved that the numbers of solutions is at least the numbers of global minimum points of $V$ when $\\epsilon$ is small enough.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"63 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On existence of multiple solutions to a class of problems involving the 1-Laplace operator in whole $\\\\mathbb{R}^N$\",\"authors\":\"Alves,Claudianor O.\",\"doi\":\"10.4310/cag.2023.v31.n6.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we use variational methods to prove the existence of multiple solutions for the following class of problem $$- \\\\epsilon \\\\Delta_1 u + V(x)\\\\frac{u}{|u|} = f(u) \\\\quad \\\\mbox{in} \\\\quad \\\\mathbb{R}^N, \\\\quad u \\\\in BV(\\\\mathbb{R}^N), $$ where $\\\\Delta_1$ is the $1-$Laplacian operator and $\\\\epsilon$ is a positive parameter. It is proved that the numbers of solutions is at least the numbers of global minimum points of $V$ when $\\\\epsilon$ is small enough.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2023.v31.n6.a4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n6.a4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在这项工作中,我们使用变分法证明了以下一类问题的多解存在性 $$- \epsilon \Delta_1 u + V(x)\frac{u}{|u|} = f(u) \quad \mbox{in}\quad u \in BV(\mathbb{R}^N).\quad \mathbb{R}^N, \quad u \in BV(\mathbb{R}^N), $$ 其中 $\Delta_1$ 是 1-$ 拉普拉斯算子,$\epsilon$ 是一个正参数。研究证明,当 $\epsilon$ 足够小时,解的数目至少是 $V$ 全局最小点的数目。
On existence of multiple solutions to a class of problems involving the 1-Laplace operator in whole $\mathbb{R}^N$
In this work we use variational methods to prove the existence of multiple solutions for the following class of problem $$- \epsilon \Delta_1 u + V(x)\frac{u}{|u|} = f(u) \quad \mbox{in} \quad \mathbb{R}^N, \quad u \in BV(\mathbb{R}^N), $$ where $\Delta_1$ is the $1-$Laplacian operator and $\epsilon$ is a positive parameter. It is proved that the numbers of solutions is at least the numbers of global minimum points of $V$ when $\epsilon$ is small enough.
期刊介绍:
Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.