Derick Mathew;J. Prasanth Ram;Jihun Ha;Jung-Wook Park;Young-Jin Kim
{"title":"基于微型逆变器的光伏系统的自适应多模式单步功率跟踪","authors":"Derick Mathew;J. Prasanth Ram;Jihun Ha;Jung-Wook Park;Young-Jin Kim","doi":"10.1109/TSTE.2024.3434493","DOIUrl":null,"url":null,"abstract":"The conventional de-load power tracking algorithm, utilizing a perturb and observe method, manifests deficiencies in terms of speed, stability, and efficacy in identifying operating points within the inverter's voltage range. In this article, the Adaptive Multi-Mode Single-Step Power Tracking (AMSPT) algorithm is introduced, showcasing rapid adaptability to varying solar irradiation conditions, while mitigating energy losses and enhancing overall operational stability. Its key innovation lies in efficiently pinpointing the operating point within the inverter's specified voltage range through a single step. Upon achieving the desired operating point, the algorithm promptly suppresses oscillatory behavior, expediting the settling process and minimizing deviations around the set-point. This article substantiates the superiority of the AMSPT algorithm over existing methods, showcasing remarkable advancements in tracking accuracy, power fluctuations, and energy discrepancies across diverse PV system case studies. Comprehensive validation through theoretical analysis, simulations, and experimental setups meticulously confirms the claimed benefits of the proposed method.","PeriodicalId":452,"journal":{"name":"IEEE Transactions on Sustainable Energy","volume":"15 4","pages":"2651-2662"},"PeriodicalIF":8.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Multi-Mode Single-Step Power Tracking for Microinverter-Based Photovoltaic System\",\"authors\":\"Derick Mathew;J. Prasanth Ram;Jihun Ha;Jung-Wook Park;Young-Jin Kim\",\"doi\":\"10.1109/TSTE.2024.3434493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conventional de-load power tracking algorithm, utilizing a perturb and observe method, manifests deficiencies in terms of speed, stability, and efficacy in identifying operating points within the inverter's voltage range. In this article, the Adaptive Multi-Mode Single-Step Power Tracking (AMSPT) algorithm is introduced, showcasing rapid adaptability to varying solar irradiation conditions, while mitigating energy losses and enhancing overall operational stability. Its key innovation lies in efficiently pinpointing the operating point within the inverter's specified voltage range through a single step. Upon achieving the desired operating point, the algorithm promptly suppresses oscillatory behavior, expediting the settling process and minimizing deviations around the set-point. This article substantiates the superiority of the AMSPT algorithm over existing methods, showcasing remarkable advancements in tracking accuracy, power fluctuations, and energy discrepancies across diverse PV system case studies. Comprehensive validation through theoretical analysis, simulations, and experimental setups meticulously confirms the claimed benefits of the proposed method.\",\"PeriodicalId\":452,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Energy\",\"volume\":\"15 4\",\"pages\":\"2651-2662\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10612237/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10612237/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Adaptive Multi-Mode Single-Step Power Tracking for Microinverter-Based Photovoltaic System
The conventional de-load power tracking algorithm, utilizing a perturb and observe method, manifests deficiencies in terms of speed, stability, and efficacy in identifying operating points within the inverter's voltage range. In this article, the Adaptive Multi-Mode Single-Step Power Tracking (AMSPT) algorithm is introduced, showcasing rapid adaptability to varying solar irradiation conditions, while mitigating energy losses and enhancing overall operational stability. Its key innovation lies in efficiently pinpointing the operating point within the inverter's specified voltage range through a single step. Upon achieving the desired operating point, the algorithm promptly suppresses oscillatory behavior, expediting the settling process and minimizing deviations around the set-point. This article substantiates the superiority of the AMSPT algorithm over existing methods, showcasing remarkable advancements in tracking accuracy, power fluctuations, and energy discrepancies across diverse PV system case studies. Comprehensive validation through theoretical analysis, simulations, and experimental setups meticulously confirms the claimed benefits of the proposed method.
期刊介绍:
The IEEE Transactions on Sustainable Energy serves as a pivotal platform for sharing groundbreaking research findings on sustainable energy systems, with a focus on their seamless integration into power transmission and/or distribution grids. The journal showcases original research spanning the design, implementation, grid-integration, and control of sustainable energy technologies and systems. Additionally, the Transactions warmly welcomes manuscripts addressing the design, implementation, and evaluation of power systems influenced by sustainable energy systems and devices.