论接触计量流形的计量交映化

Sannidhi Alape
{"title":"论接触计量流形的计量交映化","authors":"Sannidhi Alape","doi":"arxiv-2407.15057","DOIUrl":null,"url":null,"abstract":"In this article, we investigate metric structures on the symplectization of a\ncontact metric manifold and prove that there is a unique metric structure,\nwhich we call the metric symplectization, for which each slice of the\nsymplectization has a natural induced contact metric structure. We then study\nthe curvature properties of this metric structure and use it to establish\nequivalent formulations of the $(\\kappa, \\mu)$-nullity condition in terms of\nthe metric symplectization. We also prove that isomorphisms of the metric\nsymplectizations of $(\\kappa, \\mu)$-manifolds determine $(\\kappa,\n\\mu)$-manifolds up to D-homothetic transformations. These classification\nresults show that the metric symplectization provides a unified framework to\nclassify Sasakian manifolds, K-contact manifolds and $(\\kappa, \\mu)$-manifolds\nin terms of their symplectizations.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a metric symplectization of a contact metric manifold\",\"authors\":\"Sannidhi Alape\",\"doi\":\"arxiv-2407.15057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we investigate metric structures on the symplectization of a\\ncontact metric manifold and prove that there is a unique metric structure,\\nwhich we call the metric symplectization, for which each slice of the\\nsymplectization has a natural induced contact metric structure. We then study\\nthe curvature properties of this metric structure and use it to establish\\nequivalent formulations of the $(\\\\kappa, \\\\mu)$-nullity condition in terms of\\nthe metric symplectization. We also prove that isomorphisms of the metric\\nsymplectizations of $(\\\\kappa, \\\\mu)$-manifolds determine $(\\\\kappa,\\n\\\\mu)$-manifolds up to D-homothetic transformations. These classification\\nresults show that the metric symplectization provides a unified framework to\\nclassify Sasakian manifolds, K-contact manifolds and $(\\\\kappa, \\\\mu)$-manifolds\\nin terms of their symplectizations.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.15057\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.15057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们研究了接触元流形交映化上的元结构,并证明存在一个唯一的元结构,我们称之为元交映化,对于它,交映化的每个切片都有一个自然的诱导接触元结构。然后,我们研究了这个度量结构的曲率性质,并用它建立了度量交映化的$(\kappa, \mu)$空性条件的等价形式。我们还证明了$(\kappa, \mu)$-manifolds的度量交映化的同构决定了$(\kappa, \mu)$-manifolds的D-同调变换。这些分类结果表明,度量交映化提供了一个统一的框架,可以根据它们的交映化对萨萨流形、K接触流形和$(\kappa, \mu)$-manifolds进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a metric symplectization of a contact metric manifold
In this article, we investigate metric structures on the symplectization of a contact metric manifold and prove that there is a unique metric structure, which we call the metric symplectization, for which each slice of the symplectization has a natural induced contact metric structure. We then study the curvature properties of this metric structure and use it to establish equivalent formulations of the $(\kappa, \mu)$-nullity condition in terms of the metric symplectization. We also prove that isomorphisms of the metric symplectizations of $(\kappa, \mu)$-manifolds determine $(\kappa, \mu)$-manifolds up to D-homothetic transformations. These classification results show that the metric symplectization provides a unified framework to classify Sasakian manifolds, K-contact manifolds and $(\kappa, \mu)$-manifolds in terms of their symplectizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信