泊松Lie algebroid上的移动交映结构和广义复几何

Yingdi Qin
{"title":"泊松Lie algebroid上的移动交映结构和广义复几何","authors":"Yingdi Qin","doi":"arxiv-2407.15598","DOIUrl":null,"url":null,"abstract":"Generalized complex geometry was classically formulated by the language of\ndifferential geometry. In this paper, we reformulated a generalized complex\nmanifold as a holomorphic symplectic differentiable formal stack in a\nhomotopical sense. Meanwhile, by developing the machinery for shifted\nsymplectic formal stack, we prove that the coisotropic intersection inherits\nshifted Poisson structure. Generalized complex branes are also studied.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shifted symplectic structure on Poisson Lie algebroid and generalized complex geometry\",\"authors\":\"Yingdi Qin\",\"doi\":\"arxiv-2407.15598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generalized complex geometry was classically formulated by the language of\\ndifferential geometry. In this paper, we reformulated a generalized complex\\nmanifold as a holomorphic symplectic differentiable formal stack in a\\nhomotopical sense. Meanwhile, by developing the machinery for shifted\\nsymplectic formal stack, we prove that the coisotropic intersection inherits\\nshifted Poisson structure. Generalized complex branes are also studied.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.15598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.15598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

广义复几何学在经典上是用微分几何学语言来表述的。在本文中,我们将广义复几何学重新表述为全形交映可微形式堆栈。同时,通过开发移交错形式堆栈的机制,我们证明了各向同性交点继承了移泊松结构。我们还研究了广义复支链。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shifted symplectic structure on Poisson Lie algebroid and generalized complex geometry
Generalized complex geometry was classically formulated by the language of differential geometry. In this paper, we reformulated a generalized complex manifold as a holomorphic symplectic differentiable formal stack in a homotopical sense. Meanwhile, by developing the machinery for shifted symplectic formal stack, we prove that the coisotropic intersection inherits shifted Poisson structure. Generalized complex branes are also studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信