轨道曲面的部分包裹富卡亚范畴

Severin Barmeier, Sibylle Schroll, Zhengfang Wang
{"title":"轨道曲面的部分包裹富卡亚范畴","authors":"Severin Barmeier, Sibylle Schroll, Zhengfang Wang","doi":"arxiv-2407.16358","DOIUrl":null,"url":null,"abstract":"We give a complete description of partially wrapped Fukaya categories of\ngraded orbifold surfaces with stops. We show that a construction via global\nsections of a natural cosheaf of A$_\\infty$ categories on a Lagrangian core of\nthe surface is equivalent to a global construction via the (equivariant) orbit\ncategory of a smooth cover. We therefore establish the local-to-global\nproperties of partially wrapped Fukaya categories of orbifold surfaces closely\nparalleling a proposal by Kontsevich for Fukaya categories of smooth Weinstein\nmanifolds. From the viewpoint of Weinstein sectorial descent in the sense of Ganatra,\nPardon and Shende, our results show that orbifold surfaces also have Weinstein\nsectors of type $\\mathrm D$ besides the type $\\mathrm A$ or type\n$\\widetilde{\\mathrm A}$ sectors on smooth surfaces. We describe the global sections of the cosheaf explicitly for any generator\ngiven by an admissible dissection of the orbifold surface and we give a full\nclassification of the formal generators which arise in this way. This shows in\nparticular that the partially wrapped Fukaya category of an orbifold surface\ncan always be described as the perfect derived category of a graded associative\nalgebra. We conjecture that associative algebras obtained from dissections of\norbifold surfaces form a new class of associative algebras closed under derived\nequivalence.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partially wrapped Fukaya categories of orbifold surfaces\",\"authors\":\"Severin Barmeier, Sibylle Schroll, Zhengfang Wang\",\"doi\":\"arxiv-2407.16358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a complete description of partially wrapped Fukaya categories of\\ngraded orbifold surfaces with stops. We show that a construction via global\\nsections of a natural cosheaf of A$_\\\\infty$ categories on a Lagrangian core of\\nthe surface is equivalent to a global construction via the (equivariant) orbit\\ncategory of a smooth cover. We therefore establish the local-to-global\\nproperties of partially wrapped Fukaya categories of orbifold surfaces closely\\nparalleling a proposal by Kontsevich for Fukaya categories of smooth Weinstein\\nmanifolds. From the viewpoint of Weinstein sectorial descent in the sense of Ganatra,\\nPardon and Shende, our results show that orbifold surfaces also have Weinstein\\nsectors of type $\\\\mathrm D$ besides the type $\\\\mathrm A$ or type\\n$\\\\widetilde{\\\\mathrm A}$ sectors on smooth surfaces. We describe the global sections of the cosheaf explicitly for any generator\\ngiven by an admissible dissection of the orbifold surface and we give a full\\nclassification of the formal generators which arise in this way. This shows in\\nparticular that the partially wrapped Fukaya category of an orbifold surface\\ncan always be described as the perfect derived category of a graded associative\\nalgebra. We conjecture that associative algebras obtained from dissections of\\norbifold surfaces form a new class of associative algebras closed under derived\\nequivalence.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.16358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了带止境的梯度轨道曲面的部分包裹富卡亚范畴的完整描述。我们证明,在曲面的拉格朗日核上通过A$_\infty$范畴的自然余弦的全局剖分进行的构造等同于通过光滑覆盖的(等变)轨道范畴进行的全局构造。因此,我们建立了部分包裹的轨道曲面的富卡亚范畴的局部到全局性质,这与康采维奇(Kontsevich)提出的光滑韦恩斯坦曼弗雷德的富卡亚范畴的建议非常相似。从加纳特拉(Ganatra)、帕尔登(Pardon)和申德(Shende)意义上的韦恩斯坦扇形下降的观点来看,我们的结果表明,除了光滑曲面上的$mathrm A$ 或$mathrm A}$ 扇形之外,轨道曲面也有$mathrm D$ 类型的韦恩斯坦扇形。我们明确地描述了由轨道表面的可允许剖分给出的任何生成器的cosheaf的全局截面,并给出了以这种方式产生的形式生成器的完整分类。这尤其表明,球面的部分包裹富卡亚范畴总是可以被描述为分级关联代数的完备派生范畴。我们猜想,从球面的剖分得到的关联代数构成了一类新的在派生等价性下封闭的关联代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partially wrapped Fukaya categories of orbifold surfaces
We give a complete description of partially wrapped Fukaya categories of graded orbifold surfaces with stops. We show that a construction via global sections of a natural cosheaf of A$_\infty$ categories on a Lagrangian core of the surface is equivalent to a global construction via the (equivariant) orbit category of a smooth cover. We therefore establish the local-to-global properties of partially wrapped Fukaya categories of orbifold surfaces closely paralleling a proposal by Kontsevich for Fukaya categories of smooth Weinstein manifolds. From the viewpoint of Weinstein sectorial descent in the sense of Ganatra, Pardon and Shende, our results show that orbifold surfaces also have Weinstein sectors of type $\mathrm D$ besides the type $\mathrm A$ or type $\widetilde{\mathrm A}$ sectors on smooth surfaces. We describe the global sections of the cosheaf explicitly for any generator given by an admissible dissection of the orbifold surface and we give a full classification of the formal generators which arise in this way. This shows in particular that the partially wrapped Fukaya category of an orbifold surface can always be described as the perfect derived category of a graded associative algebra. We conjecture that associative algebras obtained from dissections of orbifold surfaces form a new class of associative algebras closed under derived equivalence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信