Phu Nguyen-Duc, Huu Duy Nguyen, Quoc-Huy Nguyen, Tan Phan-Van, Ha Pham-Thanh
{"title":"应用长短期记忆(LSTM)网络对越南各地的月降雨量进行季节性预测","authors":"Phu Nguyen-Duc, Huu Duy Nguyen, Quoc-Huy Nguyen, Tan Phan-Van, Ha Pham-Thanh","doi":"10.1007/s12145-024-01414-3","DOIUrl":null,"url":null,"abstract":"<p>Seasonal rainfall forecasting is important for water resources management, agriculture, and disaster prevention. Our study aims to provide an automated deep learning method for the seasonal prediction of monthly rainfall at stations in seven climatic sub-regions in Vietnam with lead times of up to 6 months. An appropriate set of predictors was selected based on numerous climate indices and neighbor station data for the period 1980–2020. We developed an adapted deep learning pipeline for both short- and long-term analysis. The predicted rainfall was verified against the observed data using mean absolute error (MAE), root mean squared error (RMSE), and Pearson correlation coefficients. The results showed that our model generally captured well observed data reflected by low error (MAE and RMSE < 0.2) and high correlation (at 0.8–0.9) for all climatic sub-regions. For the leadtimes of 1–3 months, the rainfall predictionsmade using climate indices as predictors were outperformed by those using neighbor stations data; while for longer leadtimes (4–6 months), the climate indices themselve were able to improve the performance. The rainfall predictions of our methods on all three lead times climatological predictions by factoring additional values. However, there is room for improvement in predicting extreme and abrupt shifts in time series patterns.</p>","PeriodicalId":49318,"journal":{"name":"Earth Science Informatics","volume":"60 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Long Short-Term Memory (LSTM) Network for seasonal prediction of monthly rainfall across Vietnam\",\"authors\":\"Phu Nguyen-Duc, Huu Duy Nguyen, Quoc-Huy Nguyen, Tan Phan-Van, Ha Pham-Thanh\",\"doi\":\"10.1007/s12145-024-01414-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Seasonal rainfall forecasting is important for water resources management, agriculture, and disaster prevention. Our study aims to provide an automated deep learning method for the seasonal prediction of monthly rainfall at stations in seven climatic sub-regions in Vietnam with lead times of up to 6 months. An appropriate set of predictors was selected based on numerous climate indices and neighbor station data for the period 1980–2020. We developed an adapted deep learning pipeline for both short- and long-term analysis. The predicted rainfall was verified against the observed data using mean absolute error (MAE), root mean squared error (RMSE), and Pearson correlation coefficients. The results showed that our model generally captured well observed data reflected by low error (MAE and RMSE < 0.2) and high correlation (at 0.8–0.9) for all climatic sub-regions. For the leadtimes of 1–3 months, the rainfall predictionsmade using climate indices as predictors were outperformed by those using neighbor stations data; while for longer leadtimes (4–6 months), the climate indices themselve were able to improve the performance. The rainfall predictions of our methods on all three lead times climatological predictions by factoring additional values. However, there is room for improvement in predicting extreme and abrupt shifts in time series patterns.</p>\",\"PeriodicalId\":49318,\"journal\":{\"name\":\"Earth Science Informatics\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Science Informatics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12145-024-01414-3\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Science Informatics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12145-024-01414-3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Application of Long Short-Term Memory (LSTM) Network for seasonal prediction of monthly rainfall across Vietnam
Seasonal rainfall forecasting is important for water resources management, agriculture, and disaster prevention. Our study aims to provide an automated deep learning method for the seasonal prediction of monthly rainfall at stations in seven climatic sub-regions in Vietnam with lead times of up to 6 months. An appropriate set of predictors was selected based on numerous climate indices and neighbor station data for the period 1980–2020. We developed an adapted deep learning pipeline for both short- and long-term analysis. The predicted rainfall was verified against the observed data using mean absolute error (MAE), root mean squared error (RMSE), and Pearson correlation coefficients. The results showed that our model generally captured well observed data reflected by low error (MAE and RMSE < 0.2) and high correlation (at 0.8–0.9) for all climatic sub-regions. For the leadtimes of 1–3 months, the rainfall predictionsmade using climate indices as predictors were outperformed by those using neighbor stations data; while for longer leadtimes (4–6 months), the climate indices themselve were able to improve the performance. The rainfall predictions of our methods on all three lead times climatological predictions by factoring additional values. However, there is room for improvement in predicting extreme and abrupt shifts in time series patterns.
期刊介绍:
The Earth Science Informatics [ESIN] journal aims at rapid publication of high-quality, current, cutting-edge, and provocative scientific work in the area of Earth Science Informatics as it relates to Earth systems science and space science. This includes articles on the application of formal and computational methods, computational Earth science, spatial and temporal analyses, and all aspects of computer applications to the acquisition, storage, processing, interchange, and visualization of data and information about the materials, properties, processes, features, and phenomena that occur at all scales and locations in the Earth system’s five components (atmosphere, hydrosphere, geosphere, biosphere, cryosphere) and in space (see "About this journal" for more detail). The quarterly journal publishes research, methodology, and software articles, as well as editorials, comments, and book and software reviews. Review articles of relevant findings, topics, and methodologies are also considered.