数学生物学中出现的耦合非局部非线性系统的逆问题

Ming-Hui Ding, Hongyu Liu, Catharine W. K. Lo
{"title":"数学生物学中出现的耦合非局部非线性系统的逆问题","authors":"Ming-Hui Ding, Hongyu Liu, Catharine W. K. Lo","doi":"arxiv-2407.15713","DOIUrl":null,"url":null,"abstract":"In this paper, we propose and study several inverse problems of determining\nunknown parameters in nonlocal nonlinear coupled PDE systems, including the\npotentials, nonlinear interaction functions and time-fractional orders. In\nthese coupled systems, we enforce non-negativity of the solutions, aligning\nwith realistic scenarios in biology and ecology. There are several salient\nfeatures of our inverse problem study: the drastic reduction in\nmeasurement/observation data due to averaging effects, the nonlinear coupling\nbetween multiple equations, and the nonlocality arising from fractional-type\nderivatives. These factors present significant challenges to our inverse\nproblem, and such inverse problems have never been explored in previous\nliterature. To address these challenges, we develop new and effective schemes.\nOur approach involves properly controlling the injection of different source\nterms to obtain multiple sets of mean flux data. This allows us to achieve\nunique identifiability results and accurately determine the unknown parameters.\nFinally, we establish a connection between our study and practical applications\nin biology, further highlighting the relevance of our work in real-world\ncontexts.","PeriodicalId":501044,"journal":{"name":"arXiv - QuanBio - Populations and Evolution","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse problems for coupled nonlocal nonlinear systems arising in mathematical biology\",\"authors\":\"Ming-Hui Ding, Hongyu Liu, Catharine W. K. Lo\",\"doi\":\"arxiv-2407.15713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose and study several inverse problems of determining\\nunknown parameters in nonlocal nonlinear coupled PDE systems, including the\\npotentials, nonlinear interaction functions and time-fractional orders. In\\nthese coupled systems, we enforce non-negativity of the solutions, aligning\\nwith realistic scenarios in biology and ecology. There are several salient\\nfeatures of our inverse problem study: the drastic reduction in\\nmeasurement/observation data due to averaging effects, the nonlinear coupling\\nbetween multiple equations, and the nonlocality arising from fractional-type\\nderivatives. These factors present significant challenges to our inverse\\nproblem, and such inverse problems have never been explored in previous\\nliterature. To address these challenges, we develop new and effective schemes.\\nOur approach involves properly controlling the injection of different source\\nterms to obtain multiple sets of mean flux data. This allows us to achieve\\nunique identifiability results and accurately determine the unknown parameters.\\nFinally, we establish a connection between our study and practical applications\\nin biology, further highlighting the relevance of our work in real-world\\ncontexts.\",\"PeriodicalId\":501044,\"journal\":{\"name\":\"arXiv - QuanBio - Populations and Evolution\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Populations and Evolution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.15713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Populations and Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.15713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出并研究了在非局部非线性耦合 PDE 系统中确定未知参数的几个逆问题,包括势、非线性相互作用函数和时间分阶。在这些耦合系统中,我们强制要求解的非负性,以符合生物学和生态学中的实际情况。我们的逆问题研究有几个显著特点:平均效应导致测量/观测数据的急剧减少、多个方程之间的非线性耦合以及分数阶乘法产生的非局部性。这些因素对我们的逆问题提出了重大挑战,而此类逆问题在以往的文献中从未被探讨过。为了应对这些挑战,我们开发了新的有效方案。我们的方法包括适当控制不同源点的注入,以获得多组平均通量数据。最后,我们建立了我们的研究与生物学实际应用之间的联系,进一步突出了我们的工作在现实世界中的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse problems for coupled nonlocal nonlinear systems arising in mathematical biology
In this paper, we propose and study several inverse problems of determining unknown parameters in nonlocal nonlinear coupled PDE systems, including the potentials, nonlinear interaction functions and time-fractional orders. In these coupled systems, we enforce non-negativity of the solutions, aligning with realistic scenarios in biology and ecology. There are several salient features of our inverse problem study: the drastic reduction in measurement/observation data due to averaging effects, the nonlinear coupling between multiple equations, and the nonlocality arising from fractional-type derivatives. These factors present significant challenges to our inverse problem, and such inverse problems have never been explored in previous literature. To address these challenges, we develop new and effective schemes. Our approach involves properly controlling the injection of different source terms to obtain multiple sets of mean flux data. This allows us to achieve unique identifiability results and accurately determine the unknown parameters. Finally, we establish a connection between our study and practical applications in biology, further highlighting the relevance of our work in real-world contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信