具有方形可求和菱形剪切的圆同构

Pub Date : 2024-07-22 DOI:10.1093/imrn/rnae155
Dragomir Šarić, Yilin Wang, Catherine Wolfram
{"title":"具有方形可求和菱形剪切的圆同构","authors":"Dragomir Šarić, Yilin Wang, Catherine Wolfram","doi":"10.1093/imrn/rnae155","DOIUrl":null,"url":null,"abstract":"We introduce and study the space of homeomorphisms of the circle (up to Möbius transformations), which are in $\\ell ^{2}$ with respect to modular coordinates called diamond shears along the edges of the Farey tessellation. Diamond shears are related combinatorially to shear coordinates and are also closely related to the $\\log \\Lambda $-lengths of decorated Teichmüller space introduced by Penner. We obtain sharp results comparing this new class to the Weil–Petersson class and Hölder classes of circle homeomorphisms. We also express the Weil–Petersson metric tensor and symplectic form in terms of infinitesimal shears and diamond shears.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circle Homeomorphisms with Square Summable Diamond Shears\",\"authors\":\"Dragomir Šarić, Yilin Wang, Catherine Wolfram\",\"doi\":\"10.1093/imrn/rnae155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce and study the space of homeomorphisms of the circle (up to Möbius transformations), which are in $\\\\ell ^{2}$ with respect to modular coordinates called diamond shears along the edges of the Farey tessellation. Diamond shears are related combinatorially to shear coordinates and are also closely related to the $\\\\log \\\\Lambda $-lengths of decorated Teichmüller space introduced by Penner. We obtain sharp results comparing this new class to the Weil–Petersson class and Hölder classes of circle homeomorphisms. We also express the Weil–Petersson metric tensor and symplectic form in terms of infinitesimal shears and diamond shears.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/imrn/rnae155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入并研究了圆的同构空间(直至莫比乌斯变换),这些同构空间在 $\ell ^{2}$中与模坐标有关,称为沿法雷棋盘边的钻石剪切。钻石剪切在组合上与剪切坐标相关,也与彭纳提出的装饰泰希米勒空间的 $\log \Lambda $ 长度密切相关。我们将这个新类与圆同构的魏尔-彼得森类和赫尔德类进行比较,得到了尖锐的结果。我们还用无穷小剪切和菱形剪切来表达魏尔-彼得森度量张量和交点形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Circle Homeomorphisms with Square Summable Diamond Shears
We introduce and study the space of homeomorphisms of the circle (up to Möbius transformations), which are in $\ell ^{2}$ with respect to modular coordinates called diamond shears along the edges of the Farey tessellation. Diamond shears are related combinatorially to shear coordinates and are also closely related to the $\log \Lambda $-lengths of decorated Teichmüller space introduced by Penner. We obtain sharp results comparing this new class to the Weil–Petersson class and Hölder classes of circle homeomorphisms. We also express the Weil–Petersson metric tensor and symplectic form in terms of infinitesimal shears and diamond shears.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信