KWT-Tiny:RISC-V 加速的嵌入式关键词查找转换器

Aness Al-Qawlaq, Ajay Kumar M, Deepu John
{"title":"KWT-Tiny:RISC-V 加速的嵌入式关键词查找转换器","authors":"Aness Al-Qawlaq, Ajay Kumar M, Deepu John","doi":"arxiv-2407.16026","DOIUrl":null,"url":null,"abstract":"This paper explores the adaptation of Transformerbased models for edge\ndevices through the quantisation and hardware acceleration of the ARM Keyword\nTransformer (KWT) model on a RISC-V platform. The model was targeted to run on\n64kB RAM in bare-metal C using a custom-developed edge AI library. KWT-1 was\nretrained to be 369 times smaller, with only a 10% loss in accuracy through\nreducing output classes from 35 to 2. The retraining and quantisation reduced\nmodel size from 2.42 MB to 1.65 kB. The integration of custom RISC-V\ninstructions that accelerated GELU and SoftMax operations enabled a 5x speedup\nand thus ~5x power reduction in inference, with inference clock cycle counts\ndecreasing from 26 million to 5.5 million clock cycles while incurring a small\narea overhead of approximately 29%. The results demonstrate a viable method for\nporting and accelerating Transformer-based models in low-power IoT devices.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"356 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KWT-Tiny: RISC-V Accelerated, Embedded Keyword Spotting Transformer\",\"authors\":\"Aness Al-Qawlaq, Ajay Kumar M, Deepu John\",\"doi\":\"arxiv-2407.16026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the adaptation of Transformerbased models for edge\\ndevices through the quantisation and hardware acceleration of the ARM Keyword\\nTransformer (KWT) model on a RISC-V platform. The model was targeted to run on\\n64kB RAM in bare-metal C using a custom-developed edge AI library. KWT-1 was\\nretrained to be 369 times smaller, with only a 10% loss in accuracy through\\nreducing output classes from 35 to 2. The retraining and quantisation reduced\\nmodel size from 2.42 MB to 1.65 kB. The integration of custom RISC-V\\ninstructions that accelerated GELU and SoftMax operations enabled a 5x speedup\\nand thus ~5x power reduction in inference, with inference clock cycle counts\\ndecreasing from 26 million to 5.5 million clock cycles while incurring a small\\narea overhead of approximately 29%. The results demonstrate a viable method for\\nporting and accelerating Transformer-based models in low-power IoT devices.\",\"PeriodicalId\":501291,\"journal\":{\"name\":\"arXiv - CS - Performance\",\"volume\":\"356 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Performance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.16026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过在 RISC-V 平台上对 ARM KeywordTransformer (KWT) 模型进行量化和硬件加速,探讨了基于 Transformer 的边缘设备模型的适应性。该模型使用定制开发的边缘人工智能库,以裸机 C 语言在 64kB RAM 上运行为目标。通过重新训练和量化,模型大小从 2.42 MB 减少到 1.65 kB。定制 RISC 指令的集成加速了 GELU 和 SoftMax 操作,使推理速度提高了 5 倍,推理功耗降低了 5 倍,推理时钟周期数从 2,600 万个时钟周期减少到 550 万个时钟周期,同时产生的小面积开销约为 29%。这些结果表明,在低功耗物联网设备中导入和加速基于 Transformer 的模型是一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
KWT-Tiny: RISC-V Accelerated, Embedded Keyword Spotting Transformer
This paper explores the adaptation of Transformerbased models for edge devices through the quantisation and hardware acceleration of the ARM Keyword Transformer (KWT) model on a RISC-V platform. The model was targeted to run on 64kB RAM in bare-metal C using a custom-developed edge AI library. KWT-1 was retrained to be 369 times smaller, with only a 10% loss in accuracy through reducing output classes from 35 to 2. The retraining and quantisation reduced model size from 2.42 MB to 1.65 kB. The integration of custom RISC-V instructions that accelerated GELU and SoftMax operations enabled a 5x speedup and thus ~5x power reduction in inference, with inference clock cycle counts decreasing from 26 million to 5.5 million clock cycles while incurring a small area overhead of approximately 29%. The results demonstrate a viable method for porting and accelerating Transformer-based models in low-power IoT devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信