{"title":"积分微分方程和奇异高阶微分方程的边界值问题","authors":"Francesca Anceschi, Alessandro Calamai, Cristina Marcelli, Francesca Papalini","doi":"10.1515/math-2024-0008","DOIUrl":null,"url":null,"abstract":"We investigate third-order strongly nonlinear differential equations of the type <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0008_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>k</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo accent=\"true\">″</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo accent=\"false\">′</m:mo> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mo accent=\"false\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo accent=\"true\">″</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\"1em\"/> <m:mspace width=\"0.1em\"/> <m:mtext>a.e. on</m:mtext> <m:mspace width=\"0.1em\"/> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>T</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(\\Phi \\left(k\\left(t){u}^{^{\\prime\\prime} }\\left(t)))^{\\prime} =f\\left(t,u\\left(t),u^{\\prime} \\left(t),{u}^{^{\\prime\\prime} }\\left(t)),\\hspace{1em}\\hspace{0.1em}\\text{a.e. on}\\hspace{0.1em}\\hspace{0.33em}\\left[0,T],</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0008_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Φ</m:mi> </m:math> <jats:tex-math>\\Phi </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a strictly increasing homeomorphism, and the non-negative function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0008_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> </m:math> <jats:tex-math>k</jats:tex-math> </jats:alternatives> </jats:inline-formula> may vanish on a set of measure zero. Using the upper and lower solution method, we prove existence results for some boundary value problems associated with the aforementioned equation. Moreover, we also consider second-order integro-differential equations like <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0008_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>k</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>v</m:mi> <m:mo accent=\"false\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo accent=\"false\">′</m:mo> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mfenced open=\"(\" close=\")\"> <m:mrow> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:munderover> <m:mrow> <m:mrow> <m:mo>∫</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:munderover> <m:mi>v</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mi>v</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>v</m:mi> <m:mo accent=\"false\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:mfenced> <m:mo>,</m:mo> <m:mspace width=\"1em\"/> <m:mspace width=\"0.1em\"/> <m:mtext>a.e. on</m:mtext> <m:mspace width=\"0.1em\"/> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>T</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(\\Phi \\left(k\\left(t)v^{\\prime} \\left(t)))^{\\prime} =f\\left(t,\\underset{0}{\\overset{t}{\\int }}v\\left(s){\\rm{d}}s,v\\left(t),v^{\\prime} \\left(t)\\right),\\hspace{1em}\\hspace{0.1em}\\text{a.e. on}\\hspace{0.1em}\\hspace{0.33em}\\left[0,T],</jats:tex-math> </jats:alternatives> </jats:disp-formula> for which we provide existence results for various types of boundary conditions, including periodic, Sturm-Liouville, and Neumann-type conditions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary value problems for integro-differential and singular higher-order differential equations\",\"authors\":\"Francesca Anceschi, Alessandro Calamai, Cristina Marcelli, Francesca Papalini\",\"doi\":\"10.1515/math-2024-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate third-order strongly nonlinear differential equations of the type <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0008_eq_001.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>k</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo accent=\\\"true\\\">″</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo accent=\\\"false\\\">′</m:mo> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mo accent=\\\"false\\\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo accent=\\\"true\\\">″</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\\\"1em\\\"/> <m:mspace width=\\\"0.1em\\\"/> <m:mtext>a.e. on</m:mtext> <m:mspace width=\\\"0.1em\\\"/> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>T</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left(\\\\Phi \\\\left(k\\\\left(t){u}^{^{\\\\prime\\\\prime} }\\\\left(t)))^{\\\\prime} =f\\\\left(t,u\\\\left(t),u^{\\\\prime} \\\\left(t),{u}^{^{\\\\prime\\\\prime} }\\\\left(t)),\\\\hspace{1em}\\\\hspace{0.1em}\\\\text{a.e. on}\\\\hspace{0.1em}\\\\hspace{0.33em}\\\\left[0,T],</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0008_eq_002.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> </m:math> <jats:tex-math>\\\\Phi </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a strictly increasing homeomorphism, and the non-negative function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0008_eq_003.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>k</m:mi> </m:math> <jats:tex-math>k</jats:tex-math> </jats:alternatives> </jats:inline-formula> may vanish on a set of measure zero. Using the upper and lower solution method, we prove existence results for some boundary value problems associated with the aforementioned equation. Moreover, we also consider second-order integro-differential equations like <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0008_eq_004.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>k</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>v</m:mi> <m:mo accent=\\\"false\\\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo accent=\\\"false\\\">′</m:mo> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mfenced open=\\\"(\\\" close=\\\")\\\"> <m:mrow> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:munderover> <m:mrow> <m:mrow> <m:mo>∫</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:munderover> <m:mi>v</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi mathvariant=\\\"normal\\\">d</m:mi> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mi>v</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>v</m:mi> <m:mo accent=\\\"false\\\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:mfenced> <m:mo>,</m:mo> <m:mspace width=\\\"1em\\\"/> <m:mspace width=\\\"0.1em\\\"/> <m:mtext>a.e. on</m:mtext> <m:mspace width=\\\"0.1em\\\"/> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>T</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left(\\\\Phi \\\\left(k\\\\left(t)v^{\\\\prime} \\\\left(t)))^{\\\\prime} =f\\\\left(t,\\\\underset{0}{\\\\overset{t}{\\\\int }}v\\\\left(s){\\\\rm{d}}s,v\\\\left(t),v^{\\\\prime} \\\\left(t)\\\\right),\\\\hspace{1em}\\\\hspace{0.1em}\\\\text{a.e. on}\\\\hspace{0.1em}\\\\hspace{0.33em}\\\\left[0,T],</jats:tex-math> </jats:alternatives> </jats:disp-formula> for which we provide existence results for various types of boundary conditions, including periodic, Sturm-Liouville, and Neumann-type conditions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2024-0008\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0008","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们研究的三阶强非线性微分方程类型为 ( Φ ( k ( t ) u ″ ( t ) ) ′ = f ( t , u ( t ) , u ′ ( t ) , u ″ ( t ) ) , a.e. on [ 0 , T ] , \left(\Phi \left(k\left(t){u}^{^{prime\prime} }\left(t)))^{\prime} =f\left(t,u\left(t),u^{prime} \left(t),{u}^{^{prime\prime} }\left(t)),\hspace{1em}\hspace{0.1em}text{a.e.关于}\hspace{0.1em}\hspace{0.33em}\left[0,T],其中Φ \Phi是严格递增的同构,非负函数k k可能在度量为零的集合上消失。利用上下解法,我们证明了与上述方程相关的一些边界值问题的存在性结果。此外,我们还考虑了二阶整微分方程,如 ( Φ ( k ( t ) v ′ ( t ) ) ′ = f t , ∫ 0 t v ( s ) d s , v ( t ) , v ′ ( t ) , a.e.on [ 0 , T ] , \left(\Phi \left(k\left(t)v^{prime} \left(t)))^{prime} =fleft(t,\underset{0}{\overset{t}{int }}v\left(s){\rm{d}}s,v\left(t),v^{\prime} \left(t)\right),\hspace{1em}\hspace{0.1em}text{a.e.on}/hspace{0.1em}/hspace{0.33em}/left[0,T],为此我们提供了各种边界条件的存在性结果,包括周期性条件、Sturm-Liouville 条件和 Neumann-type 条件。
Boundary value problems for integro-differential and singular higher-order differential equations
We investigate third-order strongly nonlinear differential equations of the type (Φ(k(t)u″(t)))′=f(t,u(t),u′(t),u″(t)),a.e. on[0,T],\left(\Phi \left(k\left(t){u}^{^{\prime\prime} }\left(t)))^{\prime} =f\left(t,u\left(t),u^{\prime} \left(t),{u}^{^{\prime\prime} }\left(t)),\hspace{1em}\hspace{0.1em}\text{a.e. on}\hspace{0.1em}\hspace{0.33em}\left[0,T], where Φ\Phi is a strictly increasing homeomorphism, and the non-negative function kk may vanish on a set of measure zero. Using the upper and lower solution method, we prove existence results for some boundary value problems associated with the aforementioned equation. Moreover, we also consider second-order integro-differential equations like (Φ(k(t)v′(t)))′=ft,∫0tv(s)ds,v(t),v′(t),a.e. on[0,T],\left(\Phi \left(k\left(t)v^{\prime} \left(t)))^{\prime} =f\left(t,\underset{0}{\overset{t}{\int }}v\left(s){\rm{d}}s,v\left(t),v^{\prime} \left(t)\right),\hspace{1em}\hspace{0.1em}\text{a.e. on}\hspace{0.1em}\hspace{0.33em}\left[0,T], for which we provide existence results for various types of boundary conditions, including periodic, Sturm-Liouville, and Neumann-type conditions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.