{"title":"积分微分方程和奇异高阶微分方程的边界值问题","authors":"Francesca Anceschi, Alessandro Calamai, Cristina Marcelli, Francesca Papalini","doi":"10.1515/math-2024-0008","DOIUrl":null,"url":null,"abstract":"We investigate third-order strongly nonlinear differential equations of the type <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0008_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>k</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo accent=\"true\">″</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo accent=\"false\">′</m:mo> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mo accent=\"false\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo accent=\"true\">″</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\"1em\"/> <m:mspace width=\"0.1em\"/> <m:mtext>a.e. on</m:mtext> <m:mspace width=\"0.1em\"/> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>T</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(\\Phi \\left(k\\left(t){u}^{^{\\prime\\prime} }\\left(t)))^{\\prime} =f\\left(t,u\\left(t),u^{\\prime} \\left(t),{u}^{^{\\prime\\prime} }\\left(t)),\\hspace{1em}\\hspace{0.1em}\\text{a.e. on}\\hspace{0.1em}\\hspace{0.33em}\\left[0,T],</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0008_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Φ</m:mi> </m:math> <jats:tex-math>\\Phi </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a strictly increasing homeomorphism, and the non-negative function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0008_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> </m:math> <jats:tex-math>k</jats:tex-math> </jats:alternatives> </jats:inline-formula> may vanish on a set of measure zero. Using the upper and lower solution method, we prove existence results for some boundary value problems associated with the aforementioned equation. Moreover, we also consider second-order integro-differential equations like <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0008_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Φ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>k</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>v</m:mi> <m:mo accent=\"false\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo accent=\"false\">′</m:mo> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mfenced open=\"(\" close=\")\"> <m:mrow> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:munderover> <m:mrow> <m:mrow> <m:mo>∫</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:munderover> <m:mi>v</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi mathvariant=\"normal\">d</m:mi> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mi>v</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>v</m:mi> <m:mo accent=\"false\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:mfenced> <m:mo>,</m:mo> <m:mspace width=\"1em\"/> <m:mspace width=\"0.1em\"/> <m:mtext>a.e. on</m:mtext> <m:mspace width=\"0.1em\"/> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>T</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(\\Phi \\left(k\\left(t)v^{\\prime} \\left(t)))^{\\prime} =f\\left(t,\\underset{0}{\\overset{t}{\\int }}v\\left(s){\\rm{d}}s,v\\left(t),v^{\\prime} \\left(t)\\right),\\hspace{1em}\\hspace{0.1em}\\text{a.e. on}\\hspace{0.1em}\\hspace{0.33em}\\left[0,T],</jats:tex-math> </jats:alternatives> </jats:disp-formula> for which we provide existence results for various types of boundary conditions, including periodic, Sturm-Liouville, and Neumann-type conditions.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"5 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary value problems for integro-differential and singular higher-order differential equations\",\"authors\":\"Francesca Anceschi, Alessandro Calamai, Cristina Marcelli, Francesca Papalini\",\"doi\":\"10.1515/math-2024-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate third-order strongly nonlinear differential equations of the type <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0008_eq_001.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>k</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo accent=\\\"true\\\">″</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo accent=\\\"false\\\">′</m:mo> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mo accent=\\\"false\\\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msup> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mo accent=\\\"true\\\">″</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\\\"1em\\\"/> <m:mspace width=\\\"0.1em\\\"/> <m:mtext>a.e. on</m:mtext> <m:mspace width=\\\"0.1em\\\"/> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>T</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left(\\\\Phi \\\\left(k\\\\left(t){u}^{^{\\\\prime\\\\prime} }\\\\left(t)))^{\\\\prime} =f\\\\left(t,u\\\\left(t),u^{\\\\prime} \\\\left(t),{u}^{^{\\\\prime\\\\prime} }\\\\left(t)),\\\\hspace{1em}\\\\hspace{0.1em}\\\\text{a.e. on}\\\\hspace{0.1em}\\\\hspace{0.33em}\\\\left[0,T],</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0008_eq_002.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> </m:math> <jats:tex-math>\\\\Phi </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a strictly increasing homeomorphism, and the non-negative function <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0008_eq_003.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>k</m:mi> </m:math> <jats:tex-math>k</jats:tex-math> </jats:alternatives> </jats:inline-formula> may vanish on a set of measure zero. Using the upper and lower solution method, we prove existence results for some boundary value problems associated with the aforementioned equation. Moreover, we also consider second-order integro-differential equations like <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0008_eq_004.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Φ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>k</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>v</m:mi> <m:mo accent=\\\"false\\\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo accent=\\\"false\\\">′</m:mo> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mfenced open=\\\"(\\\" close=\\\")\\\"> <m:mrow> <m:mi>t</m:mi> <m:mo>,</m:mo> <m:munderover> <m:mrow> <m:mrow> <m:mo>∫</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:munderover> <m:mi>v</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>s</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi mathvariant=\\\"normal\\\">d</m:mi> <m:mi>s</m:mi> <m:mo>,</m:mo> <m:mi>v</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>v</m:mi> <m:mo accent=\\\"false\\\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> </m:mfenced> <m:mo>,</m:mo> <m:mspace width=\\\"1em\\\"/> <m:mspace width=\\\"0.1em\\\"/> <m:mtext>a.e. on</m:mtext> <m:mspace width=\\\"0.1em\\\"/> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>T</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left(\\\\Phi \\\\left(k\\\\left(t)v^{\\\\prime} \\\\left(t)))^{\\\\prime} =f\\\\left(t,\\\\underset{0}{\\\\overset{t}{\\\\int }}v\\\\left(s){\\\\rm{d}}s,v\\\\left(t),v^{\\\\prime} \\\\left(t)\\\\right),\\\\hspace{1em}\\\\hspace{0.1em}\\\\text{a.e. on}\\\\hspace{0.1em}\\\\hspace{0.33em}\\\\left[0,T],</jats:tex-math> </jats:alternatives> </jats:disp-formula> for which we provide existence results for various types of boundary conditions, including periodic, Sturm-Liouville, and Neumann-type conditions.\",\"PeriodicalId\":48713,\"journal\":{\"name\":\"Open Mathematics\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2024-0008\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0008","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究的三阶强非线性微分方程类型为 ( Φ ( k ( t ) u ″ ( t ) ) ′ = f ( t , u ( t ) , u ′ ( t ) , u ″ ( t ) ) , a.e. on [ 0 , T ] , \left(\Phi \left(k\left(t){u}^{^{prime\prime} }\left(t)))^{\prime} =f\left(t,u\left(t),u^{prime} \left(t),{u}^{^{prime\prime} }\left(t)),\hspace{1em}\hspace{0.1em}text{a.e.关于}\hspace{0.1em}\hspace{0.33em}\left[0,T],其中Φ \Phi是严格递增的同构,非负函数k k可能在度量为零的集合上消失。利用上下解法,我们证明了与上述方程相关的一些边界值问题的存在性结果。此外,我们还考虑了二阶整微分方程,如 ( Φ ( k ( t ) v ′ ( t ) ) ′ = f t , ∫ 0 t v ( s ) d s , v ( t ) , v ′ ( t ) , a.e.on [ 0 , T ] , \left(\Phi \left(k\left(t)v^{prime} \left(t)))^{prime} =fleft(t,\underset{0}{\overset{t}{int }}v\left(s){\rm{d}}s,v\left(t),v^{\prime} \left(t)\right),\hspace{1em}\hspace{0.1em}text{a.e.on}/hspace{0.1em}/hspace{0.33em}/left[0,T],为此我们提供了各种边界条件的存在性结果,包括周期性条件、Sturm-Liouville 条件和 Neumann-type 条件。
Boundary value problems for integro-differential and singular higher-order differential equations
We investigate third-order strongly nonlinear differential equations of the type (Φ(k(t)u″(t)))′=f(t,u(t),u′(t),u″(t)),a.e. on[0,T],\left(\Phi \left(k\left(t){u}^{^{\prime\prime} }\left(t)))^{\prime} =f\left(t,u\left(t),u^{\prime} \left(t),{u}^{^{\prime\prime} }\left(t)),\hspace{1em}\hspace{0.1em}\text{a.e. on}\hspace{0.1em}\hspace{0.33em}\left[0,T], where Φ\Phi is a strictly increasing homeomorphism, and the non-negative function kk may vanish on a set of measure zero. Using the upper and lower solution method, we prove existence results for some boundary value problems associated with the aforementioned equation. Moreover, we also consider second-order integro-differential equations like (Φ(k(t)v′(t)))′=ft,∫0tv(s)ds,v(t),v′(t),a.e. on[0,T],\left(\Phi \left(k\left(t)v^{\prime} \left(t)))^{\prime} =f\left(t,\underset{0}{\overset{t}{\int }}v\left(s){\rm{d}}s,v\left(t),v^{\prime} \left(t)\right),\hspace{1em}\hspace{0.1em}\text{a.e. on}\hspace{0.1em}\hspace{0.33em}\left[0,T], for which we provide existence results for various types of boundary conditions, including periodic, Sturm-Liouville, and Neumann-type conditions.
期刊介绍:
Open Mathematics - formerly Central European Journal of Mathematics
Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
Aims and Scope
The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes: